DOI QR코드

DOI QR Code

Comparison of Tissue Water Relation Parameters in Three Gardening Tree Species

3 종류의 조경수의 조직 수분 관계 비교

  • Park, Yong-Mok (Department of Life Science, College of Natural Science and Engineering, Cheongju University)
  • 박용목 (청주대학교 이공대학 생명유전통계학부 생명과학)
  • Published : 2006.12.31

Abstract

The tissue water relation parameters were compared to assess the resistance of representative three gardening tree species to water stress. Zelkova serrata showed a strong resistant characteristics to water stress compared to Betula platyphylla var. japonica and Liriodendron turipifera. Turgor pressure at turgor loss point in Z. serrata was -2.54 MPa, whereas those of 5. platyphylla var, japonica and L. turipifera were -2.24 and -2.03, respectively. In addition, Z. serrata showed less reduction in pressure potential to decrease of free water content in the leaf tissue, indicating effective shrinking of the cell wall compared to others. On the other hand, L. turipifera indicated a weak resistance to water stress, which has low turgor potential at turgor loss point and cell wall elasticity. These results suggest that Z. serrata would be suitable for relatively dry conditions of location and humid conditions of location would be suitable for L. dendronas plantation.

냉온대림의 주요 구성종으로 산지에도 분포하며 정원수로도 식재되고 있는 느티나무와 자작나무 그리고 미국에서 도입되어 조경수로 많이 활용되는 백합나무에서 내건성과 관련한 식물의 조직 수분 특성을 비교하였다. 한계원형질분리가 일어나는 점에서의 삼투포텐셜은 느티나무에서 -2.54 MPa로 가장 낮은 값을 나타내었으며, 백합나무에서 -2.03 MPa로 가장 높은 값을 나타내었다. 잎의 수분포텐셜 변화에 대한 압력 포텐셜의 변화에서도 느티나무가 가장 논은 압력포텐셜을 유지하였다. 세포의 자유수 함량 저하에 대한 압력포텐셜 변화 곡선은 전체적으로는 비슷한 패턴의 곡선을 나타내었지만 세포의 자유수 감소 시, 느티나무와 자작나무는 백합나무보다 높은 압력포텐셜을 유지하였다. 따라서 이들 세 종 중에서는 백합나무가 내건성이 가장 낮았으며, 느티나무는 다른 두 종에 비해 내건성이 가장 강하였다.

Keywords

References

  1. 김기호, 김수봉, 정응호. 2004. 도시열섬현상 저감을 위한 그린네트워크 구축 방안에 관한 연구 -대구광역시 달서구를 대상으로-. 한국환경과학회지 13: 527-535
  2. 김수봉, 정응호, 김기호. 2006. 대구광역시 중구의 가로수 및 열섬모 자이크 현황분석. 한국환경과학회지 15: 325-332 https://doi.org/10.5322/JES.2006.15.4.325
  3. 류근옥, 장석성, 최완용, 김홍은. 2003. 우리나라에 식재한 백합나무의 적응력과 생장에 관한 연구. 한국임학회지 92: 515-525
  4. 손석규, 문흥규, 김용욱, 김지아. 2005. 백합나무 체세포 배 발생에 미치는 모수 및 암배양 효과. 한국임학회지 94: 39-44
  5. 심경구, 하유미, 이종구. 2000. 교목성 나무박태기의 조경수 이용을 위한 특성 및 번식방법. 한국원예과학기술지 18: 740-748
  6. 안지숙, 김해동. 2006. 대구지역의 기상조건에 따른 도시열섬강도의 계절별 변화특성. 한국환경과학회지 15: 527-532 https://doi.org/10.5322/JES.2006.15.6.527
  7. 유근옥, 김홍은. 2003. 백합나무 양묘기술에 관한 연구. 한국임학회지 92: 236-245
  8. 윤웅한. 2001. 녹지에 의한 열섬현상의 저감효과에 관한 연구 - 풍속과의 관련성에 관해서 -. 대한국토도시계획학회 36: 187-196
  9. 이재순, 문흥규, 김용욱. 2003. 체세포 배 발생에 의한 백합나무의 대량 증식. 한국식물생명공학회지 30: 359-363
  10. 이정웅. 2002. 도시열섬현상; 숲을 통한 기온저감 사례 -대구광역시 사례-. 도시문제 37: 47-57
  11. 이준복, 심경구, 노의래, 하유미. 1998. 조경수 이용을 위한 자생 팥배나무의 생태 및 생육특성에 관한 조사연구. 한국조경학회지 26: 229-239
  12. 한상섭. 1991. 수목의 수분특성에 관한 생리생태학적 연구(VI). -P-V 곡선법에 의한 활엽수 20종의 내건성 진단. 한국임학회지 80: 210-219
  13. 한영호, 김보현, 이동인. 1993. 부산지역 도심지의 열섬현상과 기온 변화에 관한 연구. 한국기상학회지 29: 205-216
  14. Boyer JS. 1970. Leaf enlargement and metabolic rates in corn, soybean, and sunflower at various leaf water potentials. Plant Physiol 46: 233-235 https://doi.org/10.1104/pp.46.2.233
  15. Chapin FS, Bloom AJ, Field CB, Waring RH. 1987. Plant resposes to multiple environmental factors. BioScience 37: 49-57 https://doi.org/10.2307/1310177
  16. Clifford SC, Arndt SK, Corlett JE, Joshi S, Sankhla N, Popp M, Jones HG. 1998. The role of solute accumulation, osmotic adjustment and changes in cell wall elasticity in drought tolerance in Ziziphus mauritiana (Lamk.). J Expt Bot 49: 967-977 https://doi.org/10.1093/jexbot/49.323.967
  17. Fan S, Blake TJ, Blumwald E. 1994. The relative contribution of elastic and osmotic adjustments to turgor maintenance in conditions. woody species. Physiol Plant 90: 408-413 https://doi.org/10.1111/j.1399-3054.1994.tb00406.x
  18. Fischer RA, Turner NC. 1978. Plant production in the arid and semiarid zones. Ann Rev Pl Physiol 29: 277-317 https://doi.org/10.1146/annurev.pp.29.060178.001425
  19. Hsiao TC. 1973. Plant responses to water stress. Annu Rev Plant Physiol 24: 519-570 https://doi.org/10.1146/annurev.pp.24.060173.002511
  20. Hinckley TM, Lassoie JP, Running SW. 1978. Temporal and spatial variations in the water relations of forest trees. For Sci Monogr 20: 1-72
  21. Kawano S. 1990. Biological Approaches and Evolutionary Trends in Plants. London, Academic Press
  22. Nunes MA, Catarino F, Pinto E. 1989. Strategies for acclimation to seasonal drought in Ceratonia siliqualeaves. Physiol Pl 77: 150-156 https://doi.org/10.1111/j.1399-3054.1989.tb05991.x
  23. Maruyama Y, Morikawa Y. 1983. Method of leaf water relations characteristics using P-V relationship. Jap For 65: 23-28. (in Japanese)
  24. Osonubi O, Davies WJ. 1981. Root growth and water relations of Oak and Birch seedlings. Oecologia 51: 343-350 https://doi.org/10.1007/BF00540904
  25. Schulze ED, Robichaux RH, Grace J, Rundel PW, Ehleringer JR. 1987. Plant water balance. - In diverse habitats, where water often is scare, plants display a variety of mechanisms for managing this essential resource . BioScience 37: 30-37 https://doi.org/10.2307/1310175
  26. Turner NC, Hones MM. 1980. Turgor maintenance by osmotic adjustment: A review and evlauation. In: Adaptation of Plants to Water and High Temperature Stress, (Turner NC, Kramer PJ eds). John Wiley & Sons, New York, pp 87-103
  27. Wong CS. 1978. Atmospheric input of carbon dioxide from burning wood. Science 200: 197-200 https://doi.org/10.1126/science.200.4338.197

Cited by

  1. Geographic Variation of Seed Characteristics and 1-year-old Seedling Growth of Zelkova serrata vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.234