DOI QR코드

DOI QR Code

소나무(Pinus densiflora) 묘목의 생장에 미치는 납과 CO2의 영향

Effects of Pb and CO2 on the Growth of Pinus densiflora Seedlings

  • 김성현 (이화여자대학교 생명과학과) ;
  • 홍선화 (이화여자대학교 환경공학과) ;
  • 강호정 (이화여자대학교 환경공학과) ;
  • 류희욱 (숭실대학교 환경화학공학과) ;
  • 이상돈 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과) ;
  • 이인숙 (이화여자대학교 생명과학과)
  • Kim, Sung-Hyun (Department of Life Science, Ewha Woman's University) ;
  • Hong, Sun-Hwa (Department of Environmental Science and Engineering, Ewha Woman's University) ;
  • Kang, Ho-Jeong (Department of Environmental Science and Engineering, Ewha Woman's University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University) ;
  • Lee, Sang-Don (Department of Environmental Science and Engineering, Ewha Woman's University) ;
  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Woman's University) ;
  • Lee, In-Sook (Department of Life Science, Ewha Woman's University)
  • 발행 : 2006.12.31

초록

본 연구는 $CO_2$ 증가와 Pb 오염이 소나무 묘목에 미치는 영향에 대하여 조사하였다. 납 오염 토양(500 mg/kg-soil)과 비오염토양에 2년생 소나무를 식재한 후, $CO_2$ 농도를 380 PPM 혹은 760 ppm으로 조절한 배양기에서 3개월간 생육시킨 후, 소나무 묘목의 성장, 납 함량 변화 및 토양의 물리 화학적 변화를 조사하였다. 소나무의 생체량과 뿌리 길이는$CO_2$ 농도에 따라 유의적인 차이를 보이지 않았으나, 납에 의한 저해는 뚜렷이 나타났다. 납 오염 토양에서 토양중의 납 잔류랑은 $CO_2$ 농도에 영향을 받지 않았으나, 소나무 뿌리중의 축적량은 $CO_2$ 농도가 높으면 2배 정도 높았다. 이러한 결과는 $CO_2$ 농도 증가가 소나무 뿌리의 Pb 생물 이용성에 영향을 미치는 것을 시사한다.

This work was investigated the effects of the elevated $CO_2$ and Pb contamination on the growth of Pinus densiflora. Two-years pine trees were planted in Pb-contaminated soils (500 mg/kg-soil) and uncontaminated soils, and cultivated for 3 months in the growth chamber where $CO_2$ concentration was controlled at 380 or 760 ppmv. The growth of P. densiflora were comparatively analyzed in 4 kinds of soil samples (CA : $CO_2$ 380 ppmv + Pb 0 mg/kg, CB : $CO_2$ 380 ppmv + Pb 500 mg/kg, EA : $CO_2$ 760 PPmv + Pb 0 mg/kg, EB : $CO_2$ 760 ppmv + Pb 500 mg/kg). It was measured the growth changes of the p. densiflora caused by $CO_2$ concentration and Pb contamination. The growth of P. densiflora was remarkably inhibited in the Pb-contaminated soil, although the biomass and the root elongations were not significantly affected by the elevated $CO_2$. These results suggested that the growth of p. densiflora was sensitively influenced by Pb contamination rather than $CO_2$ concentration. Compared to the initial soil, total Pb concentration in the soil samples was decreased at 760 ppmv $CO_2$ as well as at 380 ppmv $CO_2$ after 3 months. The accumulation of Pb in the roots at 760 ppmv $CO_2$ was two-fold of that at 380 ppmv $CO_2$, indicating that Pb bioavailability in the root of p. densiflora might be affected by the elevated $CO_2$.

키워드

참고문헌

  1. 백경화, 장윤영, 배범한, 이인숙. 2002. 카드뮴 오염 토양에 Phytoremediation의 적용 가능성 연구. 한국생태학회지 25(3): 175-180
  2. 성주한. 2003. 환경변화와 수목의 생리적 특성, 수목진단 및 방제기술 IV. 춘천: 강원대학교 산림과학연구소 수목진단센터 pp 65-86
  3. 이승법, 신경섭, 조영순, 손승희. 2003. 식물계절에 나타난 한반도 기후변화 영향. 한국기상학회보 13(1): 468-471
  4. 조재범, 현재혁. 2001. 토양 중 중금속 거동에 대한 휴믹산과 인산염의 영향. 한국폐기물학회지 18: 526-531
  5. 환경부. 2005. 토양측정망 및 실태조사
  6. 환경부. 2000. 토양측정망 운영결과
  7. Allen SE, Grimshow HM, Parkinson JA, Quarmby C. 1974. Chemical analysis of ecological materials. Osney Mead Oxford, UK: Blackwell Scientific Publications
  8. Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M. 1999. Improving metal-hyperaccumulators wild plants to develop commercial phytoremediation systems: Approaches and progress. In Phytoremediation of Contaminated Soil and Water eds N. Terry GS, Banuelos, Boca Raton FL, CRC Press
  9. Curtis PS, Wang X. 1998. A metal analysis of elevated $CO_{2}$ effects on woody plant mass, form, and physiology. Oecologia 113: 299-313 https://doi.org/10.1007/s004420050381
  10. David JH, Rattner BA, Burtor Jr GA, Cairns Jr J. 1995. Handbook of Ecotoxicology
  11. DeLucia EH, Hamilton JG, Naidu SL, Thomas RB, Andrews JA, Finzi A, Lavine M, Matamala R, Mohan JE, Hendrey GR. 1999. Net primary production of a forest ecosystem with experimental $CO_{2}$ enrichment. Science 284: 1177-1179 https://doi.org/10.1126/science.284.5417.1177
  12. Gifford RM. 1994. The global carbon cycle: a viewpoint on the missing sink. Australian J Plant Physiology 21: 1-15 https://doi.org/10.1071/PP9940001
  13. Gifford RM, Barrett DF, Lutze JL. 2000. The effects of elevated [$CO_{2}$] on the C:N and C:P mass ratios of plant tissues. Plant and Soil 224: 1-14 https://doi.org/10.1023/A:1004790612630
  14. Greszta J. 1982. Correlation between content of copper, zinc, lead and cadmium in the soil and the content of these metals in the seedlings of selected forest tree species. Fragm Florist Geobot 28: 29-52
  15. Grodzinska L, Kazmierczakowa R. 1977. Heavy metal content in the plants of Cracow parks, Bull. Academy Policy Science, Ser Biology 25: 227-234
  16. Haghiri FE. 1974. Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc and soil temperature. J Environ Quality 3: 180-182 https://doi.org/10.2134/jeq1974.32180x
  17. Hershey Dr. 1994. Solution culture hydroponics: History and inexpensive equipment. American Biology Teacher 56: 111-118 https://doi.org/10.2307/4449764
  18. Hooper FU, Vitousek PM. 1997. The effects of plant composition and diversity on ecosystem process. Science 277: 1302-1305 https://doi.org/10.1126/science.277.5330.1302
  19. Pushnik JC, Garcia-Ibilcieta D, Bauer S, Anderson PD, Bell J, Houpis J. 1999. Biochemical responses and altered genetic expression patterns in ponderosa Pine(Pinus ponderosa Doug ex P. Laws) Grown under Elevated $CO_{2}$. Water, Air, and Soil Poll 116: 413-422 https://doi.org/10.1023/A:1005207112589
  20. Kabata-Pendias A, Piotrowska M. 1984. Zanieczyszczenie Gleb I Roslin Uprawnych Pierwiastkami Sladowymi. Warzawa, Poland: CBR-opracowanie problemowe
  21. King JW, Mohamed A, Taylor SL, Mebrahtu T, Paul C. 2001. Supercritical fluid extraction of Vernonia galmensis seeds. Industrial crops and Products 14: 241-249 https://doi.org/10.1016/S0926-6690(01)00089-9
  22. Lagerwerff JV. 1972. Pb, Hg and Cd as contaminants. In: Mortvedt JJ, Giordano PM, Lindsay WL(eds), Micronutrients in agriculture. Soil Science Society of America J Madison pp 593- 636
  23. Lofts S, Spurgeon DJ, Svendsen C, Tipping E. 2004. Deriving soil critical limits for Cu, Zn, Cd and Pb: a method based on free ion concentrations. Environ Sci Tech 38: 3623-31 https://doi.org/10.1021/es030155h
  24. Melillo JM, Callaghan TV, Woodward FI, Salati E, Sinha SK. 1990. Effects on ecosystems (In Houghton JT, Jenkins GJ, Ephraums JJ, ed). Climate Change. Cambridge University Press. pp 285- 310
  25. Niklaus PA, Wohlfender M, Siegwolf R, Koner C. 2001. Effects of six years of atmospheric $CO_{2}$ enrichment on plant. Soil and soil microbial C of a calcareous grassland. Plant and Soil 233: 189-202 https://doi.org/10.1023/A:1010389724977
  26. Olszyk DM, Johnson MG, Phillips DL, Seidler RJ, Tingey DT, Watrud LS. 2001. Interactive effects of $CO_{2}$ and $O_{3}$ on a ponderosa pine plant/litter/soil mesocosm. Environ Poll 115 : 447-462 https://doi.org/10.1016/S0269-7491(01)00234-2
  27. Roane TM. 1999. Lead resistance in two bacterial isolates from heavy metal contaminated soils. Microbial Ecology 37: 218-24 https://doi.org/10.1007/s002489900145
  28. Sauve S, McBride M, Hendershot WH. 1998. Soil solution speciation of lead (II): effects of organic matter and pH. Soil Science Society Am J 62: 618-21 https://doi.org/10.2136/sssaj1998.03615995006200030010x
  29. Xiong ZT. 1997. Bioaccumulation and Physiological Effects of Excess Lead in a Roadside Pioneer Species Sonchus oleraceus L Envrion Poll 97(3): 275-279 https://doi.org/10.1016/S0269-7491(97)00086-9
  30. Yilmaz S. 2002. Determination of optimal land use of Erzurum plain. Ataturk University, Agriculture Faculty 32(4): 485-98