Physico-Chemical Characteristics of Visibility Impairment by Airborne Pollen

공중화분에 의한 시정장애 현상의 물리적 및 화학적 특성 규명

  • Kim, Kyung-Won (School of Constructional and Environmental Engineering Gyeongju University)
  • 김경원 (경주대학교 건설환경공학부)
  • Published : 2006.12.31

Abstract

Intensive visibility monitoring was conducted to investigate physical and chemical characteristics of visibility impairment by airborne pollen. Light attenuation coefficients were optically measured by a transmissometer, a nephelometer, and an aethalometer. Elemental, ionic, and carbonaceous species were chemically analyzed on the filters collected by $PM_{2.5}$ and $PM_{10}$ samplers. Aerosol size distribution was analyzed using a cascade impactor during airborne pollen period. Airborne pollen count was calculated using a scanning electron microscope. Airborne pollen was emitted into the atmosphere in springtime and funker degraded visibility through its scattering and absorbing the light. Average light extinction coefficient was measured to be $211{\pm}36Mm^{-1}$ when airborne pollen was not observed. But it increased to $459{\pm}267Mm^{-1}$ during the airborne pollen period due to increase of average $PM_{2.5}$ and $PM_{10}$ mass concentration and relative humidity and airborne pollen count concentration for $PM_{10}$, which were measured to be $46.5{\pm}29.1{\mu}g\;m^{-3},\;97.0{\pm}41.7{\mu}g\;m^{-3},\;54.1{\pm}11.6%$, and $68.2{\pm}89.7m^{-3}$, respectively. Average light extinction efficiencies for $PM_{2.5}$ and $PM_{10}$ were calculated to be $5.9{\pm}0.9$ and $4.5{\pm}0.8m^2 g^{-1}$ during the airborne pollen period. Light extinction efficiency for $PM_{10}$ increased further than that for $PM_{2.5}$. The average light extinction budget by airborne pollen was estimated to be about 24% out of the average measured light extinction coefficient during the airborne pollen period.

Keywords

References

  1. 김경원, 김영준(2003) 에어로졸의 준실시간 관측에 의한 여름철 도시지역 시정 감쇄 현상의 광.화학적인 특성 분석, 한국대기환경학회지, 19(6), 647-661
  2. 장남기, 임영득 (1979) 한국화분도감, 서울대 출판부, 서울
  3. Agashe, S.N. and A.G. Alfadil (1989) Atmospheric biopollutant monitoring in relation to meteorological parameters, Grana, 28, 97-104 https://doi.org/10.1080/00173138909429960
  4. Chow, J.C., J.G. Watson, Z. Lu, D.H. Lowenthal, C.A. Frazier, P.A. Solomon, R.H. Thuillier, K.L. Manliano (1996) Descriptive analysis of $PM_{2.5}\;and\;PM_{10}$ at regionally representive locations during SJVAQS /AUSPEX, Atmos. Environ., 30(12), 2079-2112 https://doi.org/10.1016/1352-2310(95)00402-5
  5. Doskey, P.V. and B.J. Ugoagwu (1989) Atmospheric deposition of macronutrients by pollen at a semiremote site in northern Wisconsin, Atmos. Environ., 23, 2761-2766 https://doi.org/10.1016/0004-6981(89)90556-8
  6. Francisco, J.G.M. and P. Candau (1997) Olea europaea airborne pollen in southern Spain, Ann Allergy Asthma Immunol, 78, 278-284 https://doi.org/10.1016/S1081-1206(10)63181-X
  7. Frenguelli, G., F.T.M Spieksma, E. Bricchi, B. Romano, G. Mincigrucci, A.H. Nikkels, W. Dankaart, and F. Ferranti (1991) The influence of air temperature on the staring dates of the pollen season of Alnus and Populus, Grana, 30, 196-200 https://doi.org/10.1080/00173139109427799
  8. Friedlander, S.K. (1977) Smoke, Dust and Haze, John Wiley & Sons
  9. Goldstein, S. (1960) Degradation of pollen by phycomycetes, Ecology, 41, 543-545 https://doi.org/10.2307/1933329
  10. Henry, R.C. (1977) The application of the linear system theory of visual acuity to visibility reduction by aerosols, Atmos. Environ., 11(8), 697-701 https://doi.org/10.1016/0004-6981(77)90178-0
  11. Hofman, T. and J. Michalik (1998) Alergia Pylkowa, TOM, Poznan
  12. Horvath, H. (1981) Atmospheric visibility, Atmos. Environ., 15(10/11), 1785-1796 https://doi.org/10.1016/0004-6981(81)90214-6
  13. IMPROVE (2002) Interagency Monitoring of Protected Visual EnvironmentsData Resources, National Park Service: Ft. Collins, CO. (is available on the website: http://vista.cira.colostate. edu/IMPROVE)
  14. John, W., S.M. Wall, J.L. Ondo, and W. Winklmayr (1990) Modes in the size distributions of atmospheric inorganic aerosol, Atmos. Environ., 24A(9), 2349-2359
  15. Kanchan, S. and Jayachandra (1980) Pollen allelopathy-A New phenomenon, New Phytol., 84, 739-746 https://doi.org/10.1111/j.1469-8137.1980.tb04786.x
  16. Kim, K.W. and Y.J. Kim (2005) Improvement of Field Calibration of a Transmissometer for Visibility Measurement J. KOSAE, 21(E2), 49-56
  17. Kim, K.W., Z. He, and Y.J. Kim (2004) Physico-Chemical Characteristics and Radiative Properties of Asian Dust Particles Observed at Kwangju, Korea during the 2001 ACE-Asia IOP, J. Geophys. Res., 109, D19, D19S02 https://doi.org/10.1029/2003JD003693
  18. Kim, K.W. (2003) Physico-chemical characteristics of visibility impairment in an urban area & Development of a remote digital vision visibility monitor, Ph.D. thesis, Dept. of Environmental Science and Engineering, Kwangju Institute of Science and Technology, Korea
  19. Kim, K.W., Y.J. Kim, and S.J. Oh (2001) Visibility impairment during Yellow Sand periods in the urban atmosphere of Kwangju, Korea, Atmos. Environ. 35-30, 5157-5167
  20. Kim, N.I. (1985) A study on the Atmospheric pollen calendar in Mt. Kwan-Ak, M.S, thesis, Seoul National University
  21. Koschmieder, V.H. (1924) Theorie der horizontalen sichtweite II. Kontrast und sichtweite, Beitr. z. Phys. d. fr. Atmosph., 12, 171-181
  22. Kreisberg, N.M., M.R. Stolzenburg, S.V. Hering, W.D. Dick, and P.H. McMurry (2001) A new method for measuring the dependence of particle size distributions on relative humidity, with application to the southeastern aerosol and visibility study, J. Geophys. Res., 106(D14), 14935-14949 https://doi.org/10.1029/2001JD900132
  23. Lee, E.J. (1997) Importance of pollen rain in boreal Manitoba, Canada, Ph.D. thesis, Dep. of Bot., University of Manitoba, Winnipeg, Manitoba
  24. Lee, E.J., Y.J. Cho, I.S. Kim, and P.G. Kim (2003) Deposition of airborne pine pollen in a temperature pine forest, Grana, 42(3), 178-182 https://doi.org/10.1080/00173130310016158
  25. Li, X., H. Maring, D. Savoie, K. Voss, and J.M. Prospero (1996) Dominance of mineral dust in aerosol lightscattering in the north Atlantic trade winds, Nature, 380, 416-419 https://doi.org/10.1038/380416a0
  26. Malm, W.C. (1979) Considerations in the measurement of visibility; J. Air Pollut. Control Assoc., 29(10), 1042-1052 https://doi.org/10.1080/00022470.1979.10470893
  27. Min, K.U. (1984) Aero-biological and allergollogical study for airborne pollen in Seoul, Ph.D. thesis, Seoul National University
  28. Moore, P.D., J.A. Webb, and M.E. Collinson (1991) Pollen Analysis, Oxford Blackwel
  29. NARSTO (2003) An assessment of tropospheric ozone pollution a North American perspective. NARSTO Management Coordinator's Office (Envair), Pasco, Washington. (is available on the website: http://www.cgenv.com/Narsto)
  30. Oh, J.W., H.B. Lee, H.R. Lee, B.Y. Pyun, Y.M. Ahn, K.E. Kim, S.Y. Lee, and S.L. Lee (1998) Aerobiological study of pollen and mold in Seoul, Korea, International Allergology, 47, 263-270 https://doi.org/10.1046/j.1440-1592.1998.00102.x
  31. Park, H.S., D.H. Chung, and Y.J. Joo (1994) Survey of airborne pollens in Seoul, Korea, J. Korean Med. Sci, 9(1), 42
  32. Pettijohn, F.J. (1949) Sedimentary Rocks, Harper & Brothers, New York
  33. Puc, M. and T. Wolski (2002) Betula and Populus pollen counts and meteorological conditions in Szczencin, Poland, Ann Agric Environ Med, 9, 65-9
  34. Richard, T., L. Hildemann, R. Kamens, S. Lee, W.C. Malm, S. Pandis, J. Pankow, J. Schauer, J.G. Watson, and B. Zielinska (2002) Secondary Organic Aerosols Research Strategy to Apportion Biogenic/Anthropogenic Sources: An Outcome of the First Secondary Organic Aerosol Workshop, February 4-5, Desert Research Institute, Reno, Nevada, USA
  35. Stark, N. (1972) Nutrient cycling pathways and litter fungi, Bioscience, 22, 355-360 https://doi.org/10.2307/1296341
  36. Tang, I.N. (1996) Chemical and size effects of hygroscopic aerosols on light-scattering coefficients, J. Geophys. Res., 101(D14), 19245-19250 https://doi.org/10.1029/96JD03003
  37. Turpin, B.J. and H.J. Lim (2001) Species contributions to $PM_{2.5}$ mass concentrations: revisiting common assumptions for estimating organic mass, Aerosol Sci. Technol., 35(1), 602-610 https://doi.org/10.1080/02786820119445
  38. Watson, J.G. (2002) Visibility: Science and regulation, J. Air & Waste Manage. Assoc., 52, 628-713 https://doi.org/10.1080/10473289.2002.10470813
  39. White, W.H. and P.T. Roberts (1977) On the nature and origins of visibility-reducing aerosols in the Los Angeles air basin, Atmos. Environ., 11(9), 803-811 https://doi.org/10.1016/0004-6981(77)90042-7