Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging

  • Selim, K.M.Kamruzzaman (Dept. of Polymer Science, Kyungpook National University) ;
  • Lee, Joo-Hee (Dept. of Polymer Science, Kyungpook National University) ;
  • Kim, Sun-Jung (Dept. of Polymer Science, Kyungpook National University) ;
  • Xing, Zhicai (Dept. of Polymer Science, Kyungpook National University) ;
  • Kang, Inn-Kyu (Dept. of Polymer Science, Kyungpook National University) ;
  • Chang, Yong-Min (Dept. of Diagnostic Radiology, Kyungpook National University) ;
  • Guo, Haiqing (College of Chemistry and Molecular Eng., Peking University)
  • 발행 : 2006.12.31

초록

Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.

키워드

참고문헌

  1. A. Halbreich, J. Roger, J. N. Pons, M. F. Da Silva, E Hasmonay, M. Roudier, M. Boynard, C. Sestier, A. Amri, D. Geldwerth, B. Fertil, J. C. Bacri, and D. Sabolovic, in Scientific and Clinical Applications of Magnetic Carriers, U. Hafeli, W. Schutt, J. Teller, and M. Zborowski, Eds., Plenum Press, New York, 1997, pp 399-417
  2. A. Halbreich, J. Roger, J. N. Pons, D. Geldwerth, M. F. Da Silva, M. Roudier, and J. C. Bacri, Biochimie, 80, 379 (1998) https://doi.org/10.1016/S0300-9084(00)80006-1
  3. L. A. Perrin-Cocon, P. N. Marche, and C. L. Villiers, Biochem. J., 338, 123 (1999) https://doi.org/10.1042/0264-6021:3380123
  4. S. H. Koenig and K. E. Kellar, Acad. Radiol., 3, 273 (1996) https://doi.org/10.1016/S1076-6332(96)80555-1
  5. N. Kohler, C. Sun, J. Wang, and M. Zhang, Langmuir, 21, 8858 (2005) https://doi.org/10.1021/la0503451
  6. J. Roger, J. N. Pons, R. Massart, A. Halbreich, and J. C. Bacri, Eur. Phys. J. Appl. Phys., 5, 321 (1999) https://doi.org/10.1051/epjap:1999144
  7. P. Moroz, S. K. Jones, and B. N. Gray, Int. J. Hyperthermia, 18, 267 (2002) https://doi.org/10.1080/02656730110108785
  8. F. Bertorelle, C. Wilhelm, J. Roger, F. Gazeau, C. Menager, and V. Cabuil, Langmuir, 22, 5385 (2006) https://doi.org/10.1021/la052710u
  9. Y. Zhang and J. Zhang, J. Colloid Interface Sci., 283, 352 (2005) https://doi.org/10.1016/j.jcis.2004.09.042
  10. N. Sadeghiani, L. S. Barbosa, L. P. Silva, R. B. Azevedo, P. C. Morais, and Z. G. M. Lacava, J. Magn. Magn. Mater., 289, 466 (2005) https://doi.org/10.1016/j.jmmm.2004.11.131
  11. A. K. Gupta and M. Gupta, Biomaterials, 26, 1565 (2005) https://doi.org/10.1016/j.biomaterials.2004.05.022
  12. Y. Zhang, N. Kohler, and M. Zhang, Biomaterials, 23, 1553 (2002) https://doi.org/10.1016/S0142-9612(01)00267-8
  13. L. M. Lacava, Z. G. M. Lacava, M. F. Da Silva, O. Silva, S. B. Chaves, R. B. Azevedo, F. Pelegrini, C. Gansau, N. Buske, D. Sabolovic, and P. C. Morais, Biophys. J., 80, 2483 (2001) https://doi.org/10.1016/S0006-3495(01)76217-0
  14. L. Babes, B. Denzoit, G. Tanguy, J. J. Le Jeune, and P. Jallet, J. Colloid Interface Sci., 212, 474 (1999) https://doi.org/10.1006/jcis.1998.6053
  15. J. Dietvorst, J. Londesborough, and H. Y. Steensma, Yeast, 22, 775 (2005) https://doi.org/10.1002/yea.1279
  16. F. Bealin-Kelly, C. T. Kelly, and W. M. Fogarty, Biochem. Enzymol., 1, 149 (1990)
  17. M. Nakano, H. Chaen, T. Sugimoto, and T. Miyake, US Patent 5739024 (1998)
  18. S. D. Weitman, R. H. Lark, L. R. Coney, D. W. Fort, V. Frasca, V. R Zurawski, and B. A. Kamen, Cancer Res., 52, 3396 (1992)
  19. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, Langmuir, 15, 1945 (1999) https://doi.org/10.1021/la980971g
  20. Y. K. Park, Y. H. Park, B. A. Shin, E. S. Choi, Y. R. Park, and T. Akaike, J. Control. Release, 69, 97 (2000) https://doi.org/10.1016/S0168-3659(00)00298-4
  21. H. Choi, S. R. Choi, R. Zhou, H. F. Kung, and I.-W. Chen, Acad. Radiol., 11, 996 (2004) https://doi.org/10.1016/j.acra.2004.04.018
  22. X. Liu , H. Liu, J. Xing, Y. Guan, Z. Ma, G. Shan, and C. Yang, Chaina Particuology, 2, 76 (2003)
  23. A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, Sanfrancisco, Freeman, 1963, p. 378
  24. M. A. Zhiya, G. Yueping, and H. Liu, J. Polym. Sci., Polym. Chem., 43, 3433 ( 2005) https://doi.org/10.1002/pola.20803
  25. K. I. Shingel, Carbohydr. Res., 337, 1445 (2002) https://doi.org/10.1016/S0008-6215(02)00209-4
  26. M. Yamaura, R. L. Camilo, L. C. Sampaio, M. A. Macedo, M. Nakamura, and H. E. Toma, J. Magn. Magn. Mater., 279, 210 (2004) https://doi.org/10.1016/j.jmmm.2004.01.094