The Morphology, Structure and Melting Behaviour of Cold Crystallized Isotactic Polystyrene

  • Marega, Carla (Diapartimento di Scienze Chimiche, Universita di Padova, via Marzolo) ;
  • Causin, Valerio (Diapartimento di Scienze Chimiche, Universita di Padova, via Marzolo) ;
  • Marigo, Antonio (Diapartimento di Scienze Chimiche, Universita di Padova, via Marzolo)
  • Published : 2006.12.31

Abstract

The morphology, structure and melting behaviour of cold-crystallized isotactic polystyrene (iPS) were studied by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The polymer was found to crystallize according to the dual-lamellar stack model. The two populations of lamellae, along with a melting-recrystallization phenomenon, determined the appearance of multiple melting peaks in DSC traces. The annealing peak was attributed to the relaxation of a rigid amorphous phase, rather than to the melting of crystalline material.

Keywords

References

  1. J. Boon, G. Challa, and D. W. Van Krevelen, J. Polym. Sci., A2(6), 1791 (1968)
  2. Z. Pelzbauer and R. St. J. Manley, J. Polym. Sci., A2(8), 649 (1970)
  3. P. J. Lemstra, T. Kooistra, and G. Challa, J. Polym. Sci., A2(10), 823 (1972)
  4. J. Plans, W. J. MacKnight, and F. E. Karasz, Macromolecules, 17, 810 (1984) https://doi.org/10.1021/ma00134a048
  5. D. J. Blundell, Polymer, 28, 2248 (1987) https://doi.org/10.1016/0032-3861(87)90382-X
  6. Y. Lee, R. S. Porter, and J. S. Lin, Macromolecules, 22, 1756 (1989) https://doi.org/10.1021/ma00194a043
  7. M. Al-Hussein and G. Strobl, e-polymers, 2002;38. http://www.e-polymers.org/papers/alhussein_110902.pdf [accessed 4 April 2006]
  8. M. Al-Hussein and G. Strobl, J. Macromol. Sci. Phys., B42, 677 (2003)
  9. S. Z. D. Cheng, M. Y. Cao, and B. Wunderlich, Macromolecules, 19, 1868 (1986) https://doi.org/10.1021/ma00161a015
  10. P. Cebe and S. D. Hong, Polymer, 27, 1183 (1986) https://doi.org/10.1016/0032-3861(86)90006-6
  11. D. C. Bassett, R. H. Olley, and I. A. M. Al Raheil, Polymer, 29, 1745 (1988) https://doi.org/10.1016/0032-3861(88)90386-2
  12. M. P. Lattimer, J. K. Hobbs, M. J. Hill, and P. J. Barham, Polymer, 33, 3971 (1992) https://doi.org/10.1016/0032-3861(92)90391-9
  13. K. N. Kruger and H. G. Zachmann, Macromolecules, 26, 5202 (1993) https://doi.org/10.1021/ma00071a035
  14. B. S. Hsiao, K. H. Gardner, and D. Q. Wu, Polymer, 34, 3996 (1993) https://doi.org/10.1016/0032-3861(93)90659-X
  15. T. Y. Ko and E. M. Woo, Polymer, 37, 1167 (1996) https://doi.org/10.1016/0032-3861(96)80843-3
  16. R. Verma, H. Marand, and B. Hsiao, Macromolecules, 29, 7767 (1996) https://doi.org/10.1021/ma951727o
  17. H. Marand and A. Prasad, Macromolecules, 25, 1731 (1992) https://doi.org/10.1021/ma00032a017
  18. X. L. Ji, W. J. Zhang, and Z. W. Wu, J. Polym. Sci., Polym. Phys. Ed., 35, 431 (1997) https://doi.org/10.1002/(SICI)1099-0488(199702)35:3<431::AID-POLB3>3.0.CO;2-V
  19. N. Overbergh, H. Berghmans, and H. Reynaers, J. Polym. Sci., Polym. Phys. Ed., 14, 1177 (1976) https://doi.org/10.1002/pol.1976.180140703
  20. T. Liu, S. Yan, M. Bonnet, I. Lieberwirth, K. D. Rogausch, and J. Petermann, J. Mater. Sci., 35, 5047 (2000) https://doi.org/10.1023/A:1004875514009
  21. T. Liu and J. Petermann, Polymer, 42, 6453 (2001) https://doi.org/10.1016/S0032-3861(01)00173-2
  22. T. Liu, Eur. Polym. J., 39, 1311 (2003) https://doi.org/10.1016/S0014-3057(03)00017-X
  23. H. Xu and P. Cebe, Polymer, 46, 8734 (2005) and references therein https://doi.org/10.1016/j.polymer.2005.01.105
  24. Y. Duan, J. Zhang, D. Shen, and S. Yan, Macromolecules, 36, 4874 (2003) https://doi.org/10.1021/ma034008f
  25. A. M. Hindeleh and D. J. Johnson, J. Phys. D.: Appl. Phys., 4, 259 (1971) https://doi.org/10.1088/0022-3727/4/2/311
  26. C. G. Vonk and A. P. Pijpers, J. Polym. Sci., Polym. Phys. Ed., 23, 2517 (1985) https://doi.org/10.1002/pol.1985.180231210
  27. C. G. Vonk, J. Appl. Crystallogr., 6, 81 (1973) https://doi.org/10.1107/S0021889873008204
  28. C. G. Vonk, J. Appl. Crystallogr., 4, 340 (1971) https://doi.org/10.1107/S0021889871007179
  29. D. J. Blundell, Polymer, 19, 1258 (1978) https://doi.org/10.1016/0032-3861(78)90302-6
  30. C. Marega, A. Marigo, G. Cingano, R. Zannetti, and G. Paganetto, Polymer, 37,5549 (1996) https://doi.org/10.1016/S0032-3861(96)80440-X
  31. R. Hosemann and S. N. Bagchi, Direct Analysis of Diffraction by Matter, North Holland, Amsterdam, 1962
  32. C. G. Vonk, in Small angle X-ray scattering, O. Glatter, and O. Kratky, Eds., Academic Press, London, 1982, p. 446
  33. A. Marigo, C. Marega, R. Zannetti, and P. Sgarzi, Eur. Polym. J., 34, 597 (1998) https://doi.org/10.1016/S0014-3057(97)00185-7
  34. V. Causin, C. Marega, A. Marigo, and G. Ferrara, Polymer, 46, 9533 (2005) https://doi.org/10.1016/j.polymer.2005.08.034
  35. P. J. Lemstra, A. J. Schouten, and G. Challa, J. Polym. Sci., Polym. Phys. Ed., 12, 1565 (1974) https://doi.org/10.1002/pol.1974.180120805
  36. M. Bonnet, K. D. Rogausch, and J. Petermann, J. Colloid. Polym. Sci., 277, 513 (1999) https://doi.org/10.1007/s003960050418
  37. S. X. Lu and P. Cebe, Macromolecules, 30, 6243 (1997) https://doi.org/10.1021/ma961600e
  38. M. Al-Hussein and G. Strobl, Macromolecules, 35, 1672 (2002) https://doi.org/10.1021/ma011345k