Antiprotozoal Activity of Deacetylated Chitosan Oligosaccharide (dp 2-8) on Trichomonas vaginalis

  • Shin, Woon-Seob (Department of Microbiology, Kwandong University College of Medicine) ;
  • Kil, Jun-Cheul (Department of Parasitology, Kwandong University College of Medicine) ;
  • Park, Gab-Man (Department of Parasitology, Kwandong University College of Medicine)
  • Published : 2006.12.30

Abstract

Deacetylated chitosan oligosaccharide (COS) had effective antiprotozoal activity against Trichomonas vaginalis (Minimal Inhibitory Concentration, MIC 0.25%), whereas 80% acetylated cas showed no antiprotozoal activity (MIC > 1 %). an the other hand, 80% acetylated cas showed growth stimulatory activity against the protozoa. When T. vaginalis was treated with 98% deacetylated COS at 0.25% concentration, the viability of the protozoa was rapidly decreased within 15 min, and the protozoa completely died within 40 min. Ultrastructural changes of trichomonads treated with COS included a loss of defined nuclear membrane and endoplasmic reticulum membranes, an increase in the number of free ribosome, vacuolation, and ultimately lysis of the cell membrane. These results indicate that deacetylated COS can be used as an antitrichomonal agent, although its lethal mechanism is not known.

Keywords

References

  1. Schwebke, J. R. and D. Burgess. 2004. Trichomoniasis. Clin. Microbiol. Rev. 17: 794-803 https://doi.org/10.1128/CMR.17.4.794-803.2004
  2. Cudmore, S. L., K. L. Delgaty, S. F. Hayward-McClelland, D. P. Petrin, and G. E. Garber. 2004. Treatment of infections caused by metronidazole-resistant Trichomonas vaginalis. Clin. Microbiol. Rev. 17: 783-793 https://doi.org/10.1128/CMR.17.4.783-793.2004
  3. Schmid, G., E. Narcisi, D. Mosure, and E. Secor. 2001. Prevalence of metronidazole resistant Trichomonas vaginalis in a gynecology clinic. J. Reprod. Med. 46: 545-549
  4. Jeon, Y. J. and S. K. Kim. 2002. Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbiol. Biotechnol. 12: 503-507
  5. Seo, W. G., H. O. Pae, N. Y. Kim, G. S. Oh, I. S. Park, Y. H. Kim, Y. M. Kim, Y. H. Lee, C. D. Jun, and H. T. Chung. 2000. Synergistic cooperation between water soluble chitosan oligomers and interferon-${\gamma}$ for induction of nitric oxide synthesis and tumoricidal activity in murine peritoneal macrophages. Cancer Lett. 159: 189-195 https://doi.org/10.1016/S0304-3835(00)00551-6
  6. Jeon, Y. J. and S. K. Kim. 2001. Effect of antimicrobial activity by chitosan oligosaccharide N-conjugated with asparagine. J. Microbiol. Biotechnol. 11: 281-286
  7. Choi, B. K., K. Y. Kim, Y. J. Yoo, S. J. Oh, J. H. Choi, and C. Y. Kim. 2001. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 18: 553-557 https://doi.org/10.1016/S0924-8579(01)00434-4
  8. Roller, S. and N. Covill. 1999. The antifungal properties of chitosan in laboratory media and apple juice. Int. J. Food Microbiol. 47: 67-77 https://doi.org/10.1016/S0168-1605(99)00006-9
  9. Lee, H. W., Y. S. Park, J. S. Jung, and W. S. Shin. 2002. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactpbacillus sp. Anaerobe 8: 319-324 https://doi.org/10.1016/S1075-9964(03)00030-1
  10. Furda, I. 1983. Aminopolysaccharides - their potential as dietary fiber, pp. 105-122. In I. Furda (ed.), Unconventional Sources of Dietary Fiber. ACS Symposium series 214, American Chemical Society, Washington, D.C
  11. Shahidi, F., J. K. V. Arachchi, and Y. J. Jeon. 1999. Food applications of chitin and chitosans. Trends Food Sci. Technol. 10: 37-51 https://doi.org/10.1016/S0924-2244(99)00017-5
  12. Kubota, N., N. Tatsumoto, T. Sano, and K. Toya. 2000. A simple preparation of half N-acetylated chitosan highly soluble in water and aqueous organic solvents. Carbohydr. Res. 324: 268-274 https://doi.org/10.1016/S0008-6215(99)00263-3
  13. Chaplin, M. 1986. Monosaccharides, pp 4-5. In M. F. Chaplin and J. F. Kennedy (eds.), Carbohydrate Analysis: A Practical Approach. IRL press, Washington, D.C
  14. Park, P. J., J. Y. Je, H. G. Byun, S. H. Moon, and S. K. Kim. 2004. Antimicrobial activity of hetero-chitosans and their oligosaccharides with different molecular weights. J. Microbiol. Biotechnol. 14: 317-323 https://doi.org/10.1159/000082843
  15. Park, P. J., H. K. Lee, and S. K. Kim. 2004. Preparation of hetero-chitooligosaccharides and their antimicrobial activity on Vibrio parahaemolyticus. J. Microbiol. Biotechnol. 14: 41-47 https://doi.org/10.1159/000076925
  16. Shon, Y. H. and K. S. Nam. 2005. Induction of phase 2 enzymes and inhibition of cytochrome P450 isozymes by chitosanoligosaccharides. J. Microbiol. Biotechnol. 15: 183- 187
  17. Buchner, Y. and D. R. Edwards. 1975. The effect of metronidazole and nitrofurans on the morphology of Trichomonas vaginalis. J. Antimicrob. Chemother. 1: 229- 234 https://doi.org/10.1093/jac/1.2.229
  18. Ings, R. M. and F. Constable. 1975. An investigation into the effect of metronidazole on the morphology of Trichomonas vaginalis. J. Antimicrob. Chemother. 1: 121-126 https://doi.org/10.1093/jac/1.1.121
  19. Smith, B. F. and B. T. Stewart. 1966. Fine structure of Trichomonas vaginalis. Exp. Parasitol. 19: 52-63 https://doi.org/10.1016/0014-4894(66)90052-X
  20. Nielsen, M. H. 1976. In vitro effect of metronidazole on the ultrastructure of Trichomonas vaginalis Donné. Acta Pathol. Microbiol. Scand. (B) 84: 93-100
  21. Carosi, G., G. Filice, F. Suter, and A. Dei Gas. 1977. Trichomonas vaginalis: Effect of trinidazole on ultrastructure in vitro. Exp. Parasitol. 43: 315-325 https://doi.org/10.1016/0014-4894(77)90036-4
  22. Muller, M. 1973. Biochemical cytology of trichomonal flagellates. J. Cell Biol. 57: 453-474 https://doi.org/10.1083/jcb.57.2.453
  23. Lindmark, D. C. and M. Müller. 1973. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Trichomonas foetus and its role in pyruvate metabolism. J. Biol. Chem. 248: 7724-7728