Flocculation of an Isolated Flocculent Yeast, Candida tropicalis HY200, and its Application for Efficient Xylitol Production Using Repeated-Batch Cultivation

  • Kang, Heui-Yun (Department of Molecular Science and Technology, College of Engineering, Ajou University) ;
  • Kim, Yong-Sung (Department of Agricultural Biology, National Institute of Agricultural Science and Technology, RDA) ;
  • Seo, Jin-Ho (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ryu, Yeon-Woo (Department of Molecular Science and Technology, College of Engineering, Ajou University)
  • Published : 2006.12.30

Abstract

Flocculation of Candida tropicalis HY200 was systemically investigated to elucidate its mechanism, and used for cell cycles in repeated-batch cultivations for the production of xylitol from xylose. Flocculation occurred only after the late exponential phase of growth in the culture media and buffer within the narrow pH range of 3.0-5.0. The flocculation was completely inhibited by treatments of cells with proteases and partially reduced by treatments with carbohydrate-hydrolyzing enzymes and by the presence of mannose and glucose. The addition of calcium ions significantly enhanced the flocculation during cultivation, which was completely abolished by the addition of EDTA. The flocculent yeast HY200 provided repeated-batch cultivations employing cell recycles by flocculation over 6 rounds of cultivation for the production of xylitol from xylose, resulting in a relatively high productivity of averaged 4.6 g xylitol/l h over six batches and maximal 6.3 g xylitol/l h in the final sixth batch. Cell recycle by flocculation was fast and convenient, which could be applicable for the industrial scale of xylitol production.

Keywords

References

  1. Al-Mahmood, S., S. Colin, and R. Bonaly. 1991. Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. J. Biol. Chem. 266: 20882-20887
  2. An, J. Y., S. J. Sim, B. W. Kim, and J. S. Lee. 2004. Improvement of hydrocarbon recovery by two-stage cellrecycle extraction in the cultivation of Botryococcus braunii. J. Microbiol. Biotechnol. 14: 932-937
  3. Bae, S. M., Y. C. Park, T. H. Lee, D. H. Kweon, J. H. Choi, S. K. Kim, Y. W. Ryu, and J. H. Seo. 2004. Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermenations. Enzyme Microb. Technol. 35: 545-549 https://doi.org/10.1016/j.enzmictec.2004.08.006
  4. Barker, M. G. and K. A. Smart. 1996. Morphological changes associated with the cellular ageing of a brewing yeast strain. J. Am. Soc. Brew. Chem. 54: 121-126 https://doi.org/10.1094/ASBCJ-54-0121
  5. Carvalho, W., S. S. Silva, A. Converti, and M. Vitolo. 2002. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol. Bioeng. 79: 165-169 https://doi.org/10.1002/bit.10319
  6. Choi, J. H., K. H. Moon, Y. W. Ryu, and J. H. Seo. 2000. Production of xylitol in cell recycle fermentation of Candida tropicalis. Biotechnol. Lett. 22: 1625-1628 https://doi.org/10.1023/A:1005693427389
  7. Cubells-Martinez, X. C., A. Narbad, A. T. Carter, and M. Stratford. 1996. Flocculation of the yeast Candida famata (Debaryomyces hansenii): An essential role for peptone. Yeast 12: 415-423 https://doi.org/10.1002/(SICI)1097-0061(199604)12:5<415::AID-YEA919>3.0.CO;2-Z
  8. Dengis, P. B., L. R. Nelissen, and P. G. Rouxhet. 1995. Mechanisms of yeast flocculation: Comparison of top- and bottom-fermenting strains. Appl. Environ. Microbiol. 61: 718-728
  9. El-Behhari, M., G. Gehin, J. Coulon, and R. Bonaly. 2000. Evidence for a lectin in Kluyveromyces sp. that is involved in co-flocculation with Schizosaccharomyces pombe. FEMS Microbiol. Lett. 184: 41-46 https://doi.org/10.1111/j.1574-6968.2000.tb08987.x
  10. Emidi, A. 1978. Xylitol, its properties and food application. Food Technol. 32: 20-32
  11. Farias, M. E. and M. C. Manca de Nadra. 2003. Flocculation and cell surface characterization of Kloeckera apiculata from wine. J. Appl. Microbiol. 95: 457-462 https://doi.org/10.1046/j.1365-2672.2003.01994.x
  12. Hodgson, J. A., D. R. Berry, and J. R. Johnston. 1985. Discrimination by heat and proteinase treatments between flocculent phenotypes conferred on Saccharomyces cerevisiae by the genes FLO1 and FLO5. J. Gen. Microbiol. 131(Pt 12): 3219-3227
  13. Jin, Y. L. and R. A. Speers. 2000. Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem. 59: 1-9
  14. Johnson, B. F., T. Walker, G. B. Clalleja, and V. L. Seligy. 1988. Sexual coflocculation and asexual self-flocculation in budding and fission yeasts: Experimental establishment for a fundamental difference. Can. J. Microbiol. 34: 1105-1107 https://doi.org/10.1139/m88-195
  15. Kang, H. Y., Y. S. Kim, G. J. Kim, J. H. Seo, and Y. W. Ryu. 2005. Screening and characterization of flocculent yeast, Candida sp. HY200, for the production of xylitol from Dxylose. J. Microbiol. Biotechnol. 15: 362-367
  16. Kim, J. H., K. C. Han, Y. H. Koh, Y. W. Ryu, and J. H. Seo. 2002. Optimization of fed-batch fermentation for xylitol production by Candida tropicalis. J. Ind. Microbiol. Biotechnol. 29: 16-19 https://doi.org/10.1038/sj.jim.7000257
  17. Kim, J. M., C. H. Park, S. W. Kim, and S. Y. Kim. 2006. Flux optimization using genetic algorithms in membrane bioreactor. J. Microbiol. Biotechnol. 16: 863-869
  18. Kim, T. B., Y. J. Lee, P. Kim, C. S. Kim, and D. K. Oh. 2004. Increased xylitol production rate during long-term cell recycle fermentation of Candida tropicalis. Biotechnol. Lett. 26: 623-627 https://doi.org/10.1023/B:BILE.0000023019.02411.54
  19. Kruppa, M., T. Goins, J. E. Cutler, D. Lowman, D. Williams, N. Chauhan, V. Menon, P. Singh, D. Li, and R. Calderone. 2003. The role of the Candida albicans histidine kinase [CHK1] gene in the regulation of cell wall mannan and glucan biosynthesis. FEMS Yeast Res. 3: 289-299
  20. Kwon, S. G., S. W. Park, and D. K. Oh. 2006. Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J. Biosci. Bioeng.101: 13-18 https://doi.org/10.1263/jbb.101.13
  21. Miki, B. L., N. P. Poon, A. P. James, and V. L. Seligy. 1982. Possible mechanism for flocculation interactions governed by gene FLO1 in Saccharomyces cerevisiae. J. Bacteriol. 150: 878-889
  22. Miki, B. L., N. H. Poon, and V. L. Seligy. 1982. Repression and induction of flocculation interactions in Saccharomyces cerevisiae. J. Bacteriol. 150: 890-899
  23. Nishihara, H. T., T. Toraya, and S. Fukui. 1982. Flocculation of cell walls of Brewer's yeast and effects of metal ions, protein-denaturants and enzyme treatments. Arch. Microbiol. 131: 112-115 https://doi.org/10.1007/BF01053991
  24. Oh, D. K. and S. Y. Kim. 1998. Increase of xylitol yield by feeding xylose and glucose in Candida tropicalis. Appl. Microbiol. Biotechnol. 50: 419-425 https://doi.org/10.1007/s002530051314
  25. Oh, D. K., S. Y. Kim, and J. H. Kim. 1998. Increase of xylitol production rate by controlling redox potential in Candida parapsilosis. Biotechnol. Bioeng. 58: 440-444 https://doi.org/10.1002/(SICI)1097-0290(19980520)58:4<440::AID-BIT11>3.0.CO;2-F
  26. Park, C., Y. H. Choi, H. J. Shin, H. Poo, J. J. Song, C. J. Kim, and M. H. Sung. 2005. Effect of high-molecular-weight poly-${\gamma}$-glutamic acid from Bacillus subtilis (chungkookjang) on Ca solubility and intestinal absorption. J. Microbiol. Biotechnol. 15: 855-858
  27. Rhymes, M. R. and K. A. Smart. 1996. Effect of starvation on the flocculation of ale and lager brewing yeasts. J. Am. Soc. Brew. Chem. 54: 50-56 https://doi.org/10.1094/ASBCJ-54-0050
  28. Saito, K., S. Sato, H. Shimoi, H. Iefuji, and M. Tadenuma. 1990. Flocculation mechanism of Hansenula anomala J224. Agric. Biol. Chem. 54: 1425-1432 https://doi.org/10.1271/bbb1961.54.1425
  29. Stratford, M. 1992. Yeast flocculation: A new perspective. Adv. Microb. Physiol. 33: 2-71
  30. Stratford, M. 1993. Yeast flocculation: Flocculation onset and receptor availability. Yeast 9: 85-94 https://doi.org/10.1002/yea.320090111
  31. Stratford, M. 1996. Induction of flocculation in brewing yeasts by change in pH value. FEMS Microbiol. Lett. 136: 13-18 https://doi.org/10.1111/j.1574-6968.1996.tb08018.x
  32. Tran, L. H., M. Yogo, H. Ojima, O. Idota, K. Kawai, T. Suzuki, and K. Takamizawa. 2004. The production of xylitol by enzymatic hydrolysis of agricultural wastes. Biotechnol. Bioprocess Eng. 9: 223-228 https://doi.org/10.1007/BF02942297
  33. Verstrepen, K. J., G. Derdelinckx, H. Verachtert, and F. R. Delvaux. 2003. Yeast flocculation: What brewers should know. Appl. Microbiol. Biotechnol. 61: 197-205 https://doi.org/10.1007/s00253-002-1200-8