Construction of an Escherichia-Pseudomonas Shuttle Vector Containing an Aminoglycoside Phosphotransferase Gene and a lacZ' Gene for $\alpha$-Complementation

  • Lee, Bheong-Uk (Division of Biological Sciences, Kosin University) ;
  • Hong, Ja-Heon (Division of Biological Sciences, Kosin University) ;
  • Kahng, Hyung-Yeel (Department of Environmental Education, Sunchon National University) ;
  • Oh, Kye-Heon (Department of Genetic Engineering, Soonchunhyang University)
  • Published : 2006.12.31

Abstract

A new 4.87 kb Escherichia-Pseudomonas shuttle vector has been constructed by inserting a 1.27 kb DNA fragment with a replication origin of a Pseudomonas plasmid pRO1614 into the 3.6 kb E. coli plasmid pBGS18. This vector, designated pJH1, contains an aminogly-coside phosphotransferase gene (aph) from Tn903, a lacZ' gene for $\alpha$-complementation and a versatile multiple cloning site possessing unique restriction sites for EcoRI, SacI, KpnI, SmaI, BamHI, XbaI, SalI, BspMI, PstI, SphI, and HindIII. When pJH1 was transformed into E. coli DHS${\alpha}$ and into P. putida HK-6, it was episomally and stably maintained in both strains. In addition, the enhanced green fluorescent protein (EGFP) gene which was transcriptionally cloned into pJH1 rendered E. coli cells fluorescence when its transformants were illuminated at 488 nm.

Keywords

References

  1. Chang, H.W., H.Y. Kahng, S.I. Kim, J.W. Chun, and K.H. Oh. 2004. Characterization of Pseudomonas sp. HK-6 cells responding to explosive RDX (hexahydro-1,3,5-trinitro-1,3, 5-triazine). Appl. Microbiol. Biotechnol. 65, 323-329
  2. Cormack, B.P., G. Bertram, M. Egerton, N.A. Gow, S. Falkow, and A.J. Brown. 1997. Yeast-enhanced green fluorescent protein (yEGFP) : a reporter of gene expression in Candida albicans. Microbiology 143, 303-311 https://doi.org/10.1099/00221287-143-2-303
  3. Davison, J. 2002. Genetic tools for Pseudomonads, Rhizobia, and other Gram-negative bacteria. BioTechniques 32, 386-401
  4. Itoh, Y. and D. Haas. 1985. Cloning vectors derived from the Pseudomonas plasmid pVS1. Gene 36, 27-36 https://doi.org/10.1016/0378-1119(85)90066-6
  5. Lam, B.S., G.A. Strobel, L.A. Harrison, and S.T. Lam. 1987. Transposon mutagenesis and tagging of fluorescent Pseudomonas: antimycotic production is necessary for control of Dutch elm disease. Proc. Natl. Acad. Sci. USA. 84, 6447-6451
  6. Mercer, A.A. and J.S. Loutit. 1979. Transformation and transfection of Pseudomonas aeruginosa: effects of metal ions. J. Bacteriol. 140, 37-42
  7. Olsen, R.H., G. DeBusscher, and W.R. McCombie. 1982. Development of broad-host-range vectors and gene banks: self-cloning of Pseudomonas aeruginosa PAO chromosome. J. Bacteriol. 150, 60-69
  8. Schweizer, H.P. 1991. Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97, 109-121 https://doi.org/10.1016/0378-1119(91)90016-5
  9. Schweizer, H.P. 1991. Improved broad-host-range lac-based plasmid vectors for the isolation and characterization of protein fusions in Pseudomonas aeruginosa. Gene 103, 87-92 https://doi.org/10.1016/0378-1119(91)90396-S
  10. Watson, A.A., R.A. Alm, and J.S. Mattick. 1996. Construction of improved vectors for protein production in Pseudomonas aeruginosa. Gene 172, 163-164 https://doi.org/10.1016/0378-1119(96)00026-1
  11. West, S.E.H., H.P. Schweizer, C. Dall, A.K. Sample, and L.J. Runyen-Janecky. 1994. Construction of improved Escherichia- Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 128, 81-86