References
- D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probability. 6 (1978), 325-331 https://doi.org/10.1214/aop/1176995577
- G. J. Babu and M. Ghosh, A ranldom functional central limit theorem for martingales, Acta. Math. Scie. Hungar. 27 (1976), 301-306 https://doi.org/10.1007/BF01902107
- P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968
- P. J. Brockwell and R. A. Davis, Time Series: Theory and Methods 2nd ed., Springer, New York, 1987
- R. M. Burton, A. R. Darbrowski, and H. Dehling, An invariance principle for weakly associated random vectors, Stoc. Proc. and Appl. 23 (1986), 301-306 https://doi.org/10.1016/0304-4149(86)90043-8
- I. Fakhre-Zakeri and S. Lee, On functional centmllimit theorems for multivariate linear processes with applications to sequential estimation, J. Stat. Plan. Inf. 3 (2000), 11-23
- W. A. Fuller, Introduction to Statistical Time-Series, 2nd Edition. Wiley Inc, New York, 1996
- T. S. Kim, Y. K. Choi, and M. H. Ko, The random functional central limit theorem for multivariate martingale difference, Taiwanese J. Math. accepted, (2006)
- C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in: Tong, Y.L., ed., IMS Lecture Notes-Monograph series. 5 (1984), 127-140
- D. Pollard, Convergence of Stochastic Processes, Wiley, New York, 1984
- Q. M. Shao, A comparison theorem on maximum inequalities between negatively associated and independent random variables, J. Theor. Probab. 13 (2000), 343-356 https://doi.org/10.1023/A:1007849609234
Cited by
- A Central Limit Theorem for the Linear Process in a Hilbert Space under Negative Association vol.16, pp.4, 2009, https://doi.org/10.5351/CKSS.2009.16.4.687