DOI QR코드

DOI QR Code

A CHARACTERIZATION OF HYPERBOLIC TORAL AUTOMORPHISMS

  • Published : 2006.10.31

Abstract

Let L : $C\;\rightarrow\;C$ be a hyperbolic automorphism. Then the hyperbolic toral automorphism $L_A\;T^2\;\rightarrow\;T^2$, induced by L, is a chaotic map ([2] pg.192). We characterize hyperbolic toral automorphisms by proving the converse of the above statement.

Keywords

References

  1. J. Banks, J. Brooks, G. Cairns and P. Stacy, On Devany's definition of chaos, Amer. Math. Monthly 99 (1992), 332-334 https://doi.org/10.2307/2324899
  2. R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publ. Co., 1987
  3. S. Lattes, Sur l'iterationdes substitutions rationalles et les fonctions de Poincare, C. R. Acad. Sci. Paris 166 (1918), 26-28
  4. J. S. Lee, Regular branched covering spaces and chaotic maps on the Riemann sphere, Commun. Korean Math. Soc. 19 (2004), no. 3, 507-517 https://doi.org/10.4134/CKMS.2004.19.3.507
  5. P. Touhay, Yet another definition of chaos, Amer. Math. Monthly 104 (1997), 411-414 https://doi.org/10.2307/2974734