p-STACKS ON SUPRATOPOLOGICAL SPACES

WON KEUN MIN

ABSTRACT. In [1], we introduced the notion of p-stacks. In this paper, by using p-stacks we characterize S^* -continuous functions, separation axioms, supracompactness and some properties on supratopological spaces. We also introduce the notion of p-supracompactness and study some properties.

1. Introduction

In [1], D. C. Kent and the author introduced neighborhood structures and neighborhood spaces which are generalized topological spaces. In order to describe a convergence theory in neighborhood spaces, we introduced "p-stack" [1] which is defined as the following: Given a set X, a collection \mathbf{C} of subsets of X is called a p-stack if (1) $A \in \mathbf{C}$ whenever $B \in \mathbf{C}$ and $B \subset A$ and (2) $A, B \in \mathbf{C}$ implies $A \cap B \neq \emptyset$. And we characterized some properties of neighborhood spaces by using the notion of "p-stack". In 1983, A. S. Mashhour et. al. [2] defined a supratopology on a set X to be a collection of subsets of X which contains X and is closed under arbitrary union. In this paper, by using the notion of p-stacks we will characterize the closure operator, the interior operator, continuity, separation axioms and some properties on supratopological spaces. We also introduce the notion of p-supracompactness by using convergence of ultrapstaks and investigate some properties

Received January 13, 2006.

²⁰⁰⁰ Mathematics Subject Classification: 54A10, 54A20, 54D10, 54D30.

Key words and phrases: p-stacks, ultrafilter, ultrapstack, convergence of p-stacks, separation axioms, p-supracompact.

This work was supported by a grant from Research Institute for Basic Science at Kangwon National University.

2. Preliminaries

Let X be a nonempty set. A subcollection $\tau \subset 2^X$ is called a supratopology [2] on X if $X \in \tau$ and τ is closed under arbitrary union. (X,τ) is called a supratopological space. The members of τ are called supraopen sets and a set is called supraclosed if the complement is a member of τ . Let (X,τ) be a supratopological space, $x \in X$. A set V is called a supra-neighborhood of x if there is a supraopen set U such that $x \in U \subset V$. The set of all supratopologies on X is denoted by $\mathbf{ST}(X)$.

Let (X, τ) and (Y, μ) be supratopological spaces. A function $f: X \to Y$ is S^* -continuous [2] if the inverse image of each supraopen set in Y is a supraopen set in X.

DEFINITION 2.1 [2]. Let (X, τ) be a supratopological space and $A \subset X$.

- (1) The suprainterior of A, denoted by Sint(A), is defined by $Sint(A) = \bigcup \{U \in \tau : U \subset A\};$
- (2) The supraclosure of A, denoted by Scl(A), is defined by $Scl(A) = \bigcap \{F \subset X : A \subset F \text{ and } X F \in \tau\};$
- (3) X is $S-T_1$ if for every two distinct points x and y in X, there exist two supraopen sets U and V such that $x \in U, y \notin U$ and $y \in V, x \notin V$;
- (4) X is $S T_2$ if for every two distinct points x and y in X, there exist two disjoint supraopen sets U and V such that $x \in U$ and $y \in V$;
- (5) X is supra-regular if for each supraclosed set H and $x \notin H$, there exist two disjoint supraopen sets U and V such that $H \subset U$ and $x \in V$;
- (6) X is supracompact if each cover of X by supracopen sets has a finite subcover.

THEOREM 2.2 [2]. Let (X, μ) be a supratopological space and $A \subset X$.

- (1) Sint(X) = X;
- (2) $Sint(A) \subset A$ for all $A \subset X$;
- (3) $A \subset B \Rightarrow Sint(A) \subset Sint(B)$ for all $A, B \subset X$;
- (4) Sint(Sint(A)) = Sint(A) for all $A \subset X$;
- (5) Sint(A) = X Scl(X A) and Scl(A) = X Sint(X A) for $A \subset X$.

Given a set X, a collection C of subsets of X is called a stack if $A \in \mathbb{C}$

whenever $B \in \mathbf{C}$ and $B \subset A$. A stack \mathbf{H} on a set X is called a p-stack [1] if it satisfies the following condition:

(p) $A, B \in \mathbf{H}$ implies $A \cap B \neq \emptyset$.

Condition (p) is called the pairwise intersection property (PIP). A collection ${\bf B}$ of subsets of X with the PIP is called a p-stack base. For a p-stack base ${\bf B}$, we denote by ${\bf }=\{A\subset X:$ there exists $F\in {\bf B}$ such that $F\subset A\}$ the p-stack generated by ${\bf B}$. If ${\bf B}=\{B\}$, then ${\bf }$ will be denoted by simply ${\bf }$. In case $x\in X$ and ${\bf B}=\{\{x\}\}$, ${\bf <\{x\}>}$ is usually $\dot x$. Let pS(X) denote the collection of all p-stacks on X, partially ordered by inclusion. The maximal elements in pS(X) are called ultrapstacks. It is obvious that every ultrafilter is an ultrapstack, and that every p-stack is contained in an ultrapstack. For function $f: X \to Y$ and ${\bf H} \in pS(X)$, the image p-stack $f({\bf H})$ in pS(Y) has p-stack base $\{f(H): H \in {\bf H}\}$. Likewise, if ${\bf G} \in pS(Y)$, $f^{-1}({\bf G})$ denotes the p-stack on X generated by $\{f^{-1}(G): G \in {\bf G}\}$.

LEMMA 2.3 [1]. For $\mathbf{H} \in pS(X)$, the following are equivalent;

- (1) **H** is an ultrapstack;
- (2) If $A \cap H \neq \emptyset$ for all $H \in \mathbf{H}$, then $A \in \mathbf{H}$;
- (3) $B \notin \mathbf{H}$ implies $X B \in \mathbf{H}$

3. Main results

First we introduce the notion of convergence of *p*-stacks on supratopological spaces in order to give characterizations of the supraclosure operator and the suprainterior operator.

Definition 3.1. Let (X, μ) be a supratopological space.

For each $x \in X$, let $\mathbf{V}_{\mu}(x) = \{V : V \text{ is a supra-neighborhood of } x\}$, and $\mathbf{V}_{\mu}(x)$ is called the *supra-neighborhood stack* at x.

A p-stack **F** on X μ -converges to x if $\mathbf{V}_{\mu}(x) \subset \mathbf{F}$.

REMARK. From the above definition, we can get a filter generated by each supra-neighborhood stack on a supratopological space and in [3, 4] we called the filter a *supra-neighborhood filter*.

We get the following theorem from Definition 3.1.

Theorem 3.2. Let (X, μ) be a supratopological space.

- (1) \dot{x} μ -converges to x for all $x \in X$;
- (2) For \mathbf{F} , $\mathbf{G} \in p\mathbf{S}(X)$, if \mathbb{F} μ -converges to x and $\mathbf{F} \subset \mathbf{G}$, then \mathbf{G} μ -converges to x;

(3) For \mathbf{F} , $\mathbf{G} \in p\mathbf{S}(X)$, if both \mathbf{F} and \mathbf{G} μ -converge to x, then $\mathbf{F} \cap \mathbf{G} = \{F \cup G : F \in \mathbf{F}, G \in \mathbf{G}\}$ μ -converges to x;

DEFINITION 3.3. Let (X, μ) be a supratopological space, $A \subset X$ and let $\mathbf{V}_{\mu}(x)$ be the supra-neighborhood stack at x.

- (1) $I_{\mu}(A) = \{x \in A : A \in \mathbf{V}_{\mu}(x)\};$
- (2) $Cl_{\mu}(A) = \{x \in X : A \cap U \neq \emptyset \text{ for all } U \in \mathbf{V}_{\mu}(x)\}.$

LEMMA 3.4. Let (X, μ) be a supratopological space, $A \subset X$. Then the following are equivalent:

- (1) $Scl(A) = Cl_{\mu}(A);$
- (2) $Sint(A) = I_{\mu}(A)$.

THEOREM 3.5. Let (X, μ) be a supratopological space, $A \subset X$.

- (1) $x \in I_{\mu}(A)$ iff $A \in \mathbf{H}$, for every p-stack \mathbf{H} μ -converging to x;
- (2) $x \in Cl_{\mu}(A)$ iff there exists $\mathbf{H} \in p\mathbf{S}(X)$ such that \mathbf{H} μ -converges to x and $A \in \mathbf{H}$.
- PROOF. (1) Since the supra-neighborhood stack $\mathbf{V}_{\mu}(x)$ always μ -converges to x, we get $A \in \mathbf{V}_{\mu}(x)$ by hypothesis. Thus $x \in I_{\mu}(A)$.

The converse is obvious by Definition 3.1.

(2) If $x \in Cl_{\mu}(A)$, let $\mathbf{H} = \mathbf{V}_{\mu}(x) \cup \langle A \rangle = \langle \{F \cap G : F \in \mathbf{V}_{\mu}(x), G \in \langle A \rangle \} \rangle$. Then a *p*-stack \mathbf{H} μ -converges to x and $A \in \mathbf{H}$.

Conversely let $x \notin Cl_{\mu}(A)$. Then there is some $V \in \mathbf{V}_{\mu}(x)$ such that it has the empty intersection with A, and so no a p-stack containing A can μ -converge to x.

From Lemma 3.4 and Theorem 3.5 we get the following theorem:

THEOREM 3.6. Let (X, μ) be a supratopological space, $A \subset X$. Then the following are equivalent:

- (1) A is supraclosed iff $Cl_{\mu}(A) = A$;
- (2) A is supraopen iff $I_{\mu}(A) = A$;
- (3) $x \in Scl(A)$ iff there exists $\mathbf{H} \in p\mathbf{S}(X)$ such that \mathbf{H} μ -converges to x and $A \in \mathbf{H}$;
- (4) $x \in Sint(A)$ iff $A \in \mathbf{H}$, for every p-stack \mathbf{H} μ -converging to x.

Now we characterize the S^* -continuity of a map by using p-stacks as the continuity of a map is expressed by filters.

THEOREM 3.7. Let (X, μ) and (Y, ν) be supratopological spaces. If $f:(X,\mu)\to (Y,\nu)$ is a function, then the following statements are equivalent:

- (1) f is S^* -continuous;
- (2) $\mathbf{V}_{\nu}(f(x)) \subset f(\mathbf{V}_{\mu}(x))$ for all $x \in X$;
- (3) $f^{-1}(I_{\nu}(A)) \subset I_{\mu}(f^{-1}(A))$ for all $A \subset Y$;
- (4) $f(Cl_{\mu}(B)) \subset Cl_{\nu}(f(B))$ for all $B \subset X$;
- (5) If a p-stack \mathbf{F} μ -converges to x, then the image p-stack $f(\mathbf{F})$ ν -converges to f(x).

PROOF. (1) \Rightarrow (2) Let V be a member of $\mathbf{V}_{\nu}(f(x))$ in Y. Then there is a supraopen W such that $f(x) \in W \subset V$. Since f is S^* -continuous, there exists a supraopen U of x such that $f(U) \subset W \subset V$ and since $U \in \mathbf{V}_{\mu}(x)$ we get $V \in f(\mathbf{V}_{\mu}(x))$.

- $(1) \Leftrightarrow (3) \Leftrightarrow (4)$ It is obvious from Lemma 3.5.
- $(2) \Rightarrow (5)$ Let **F** be a *p*-stack μ -converging to x. Then $\mathbf{V}_{\mu}(x) \subset \mathbf{F}$, and so $\mathbf{V}_{\nu}(f(x)) \subset f(\mathbf{F})$ from (2).
- $(5) \Rightarrow (1)$ If f is not S^* -continuous, then for some $x \in X$, there is a supraopen $V \in \mathbf{V}_{\nu}(f(x))$ such that for all supraopen $U \in \mathbf{V}_{\mu}(x)$, f(U) does not inclode in V. For all $U \in \mathbf{V}_{\mu}(x)$, since $f(U) \cap (Y V) \neq \emptyset$, we get a p-stack $\mathbf{F} = f(\mathbf{V}_{\mu}(x)) \cup \langle Y V \rangle$. And since $U \cap f^{-1}(Y V) \neq \emptyset$, we also get a p-stack $\mathbf{G} = \mathbf{V}_{\mu}(x) \cup \langle f^{-1}(Y V) \rangle$ which μ -converges to x. But since $f(\mathbf{G})$ is a finer p-stack than \mathbf{F} and $Y V \in \mathbf{F}$, $f(\mathbf{G})$ can not ν -converge to f(x), contradicting to f(x).

THEOREM 3.8. Let (X, μ) be a supratopological space and $A \subset X$.

- (1) $I_{\mu}(X) = X$;
- (2) $I_{\mu}(A) \subset A$ for all $A \subset X$;
- (3) $A \subset B \Rightarrow I_{\mu}(A) \subset I_{\mu}(B)$ for all $A, B \subset X$;
- (4) $I_{\mu}(I_{\mu}(A)) = I_{\mu}(A)$ for all $A \subset X$.

Proof. They are obvious by Lemma 3.4 and Theorem 2.2. $\hfill\Box$

Let X be a nonempty set. Consider a set function $I: 2^X \to 2^X$ satisfying these axioms:

- $(i_1) I(X) = X;$
- $(\mathbf{i_2})\ I(A) \subset A \text{ for all } A \subset X;$
- $(\mathbf{i_3}) \ A \subset B \Rightarrow I(A) \subset I(B) \text{ for all } A, B \in 2^X;$
- $(\mathbf{i_4})$ I(I(A)) = I(A) for all $A \subset X$.

Let I(X) be the set of all these interior operators on X.

LEMMA 3.9. If $I \in \mathbf{I}(X)$, then the operator I uniquely determines a supratopology on X whose interior operator is I.

PROOF. Consider $\mu = \{A \subset X : I(A) = A\}$ on X. Then by $(\mathbf{i_1})$ and $(\mathbf{i_2})$, both X and \emptyset are in μ .

Let $A_i \in \mu$ for all $i \in J$. Then $A_i = I(A_i) \subset I(\bigcup_{i \in J} A_i)$, so $\bigcup_{i \in J} A_i = I(\bigcup_{i \in J} A_i)$. Thus μ is a supratopology on X. It is obvious μ is the unique supratopology determined by I whose interior operator is I. \square

From Lemma 3.9 and Theorem 3.8, we have the following result.

THEOREM 3.10. If $\varphi : \mathbf{ST}(X) \to \mathbf{I}(X)$ is defined by $\varphi(\mu) = I_{\mu}$, where $I_{\mu}(A) = \{x \in X : A \in \mathbf{V}_{\mu}(x)\}$ for all $A \subset X$, then φ is a bijection.

PROOF. If $\mu \in \mathbf{ST}(X)$, then $\varphi(\mu) = I_{\mu} \in \mathbf{I}(X)$ by Theorem 3.8. If $I \in \mathbf{I}(X)$, let $\psi(I) = \mu_I$, where $\mathbf{V}_{\mu_I}(x) = \{A \subset X : x \in I(A)\}$ for each $x \in X$. Then the map $\psi : \mathbf{I}(X) \to \mathbf{ST}(X)$ is well defined, and by Theorem 3.6, we get $\psi \circ \varphi$ is the identity map on $\mathbf{ST}(X)$.

Now we show that $\varphi \circ \psi$ is the identity map on $\mathbf{I}(X)$. For each $I \in \mathbf{I}(X)$, let $\varphi(\psi(I)) = I'$, where $\psi(I) = \mu_I = \{A : I(A) = A\}$ and $I'(A) = \{x \in A : A \in \mathbf{V}_{\mu I}(x)\}.$

Let $x \in I(A)$ for all $A \subset X$. Then by $(\mathbf{i_4})$ and the notion of μ_I , we can say that I(A) is a supraopen set containing x on a supratopological space (X, μ_I) . Then it follows from $I(A) \subset A$ that $A \in \mathbf{V}_{\mu I}(x)$. Thus from the notion of I', we get $x \in I'(A)$.

For the other inclusion, let $x \in I'(A)$. Then A is an element of the supraneighborhood stack $\mathbf{V}_{\mu I}(x)$ at x, and so we can take a supraopen set U satisfying $x \in U \subset A$ in the supratopology μ_I . Then by definition of the supratopology μ_I and $(\mathbf{i_3})$, we get $x \in U = I(U) \subset I(A)$. Consequently, I = I'.

Now we give characterizations of $S - T_1$, $S - T_2$, supra-regularity and supracompactness on a supratopological space by using p-stacks.

THEOREM 3.11. Let (X, μ) be a supratopological space. Then the following are equivalent:

- (1) (X, μ) is $S T_1$;
- (2) $\cap \mathbf{V}_{\mu}(x) = \{x\} \text{ for } x \in X;$
- (3) If \dot{x} μ -converges to y, then x = y.

PROOF. (1) \Rightarrow (2) Let y be an element in $\cap \mathbf{V}_{\mu}(x)$. Then $y \in U$ for each supraopen neighborhood U of x. Since X is $S - T_1, y = x$.

- $(2) \Rightarrow (3)$ Let \dot{x} μ -converge to y. Since $\mathbf{V}_{\mu}(y) \subset \dot{x}$, x is the element in $\cap \mathbf{V}_{\mu}(y)$. Thus x = y.
- $(3) \Rightarrow (1)$ Suppose that X is not $S T_1$. Then there are distinct x and y such that every supraopen neighborhood of x contains y. Thus $\mathbf{V}_{\mu}(x) \subset \dot{y}$ and \dot{y} μ -converges to x, contrary to (3).

Theorem 3.12. Let (X, μ) be a supratopological space. Then the following are equivalent:

- (1) (X, μ) is $S T_2$;
- (2) Every μ -convergent p-stack \mathbf{F} on X μ -converges to exactly one point.
- (3) Every μ -convergent ultrapstack \mathbf{F} on X μ -converges to exactly one point.

PROOF. (1) \Rightarrow (2) Suppose that X is $S-T_2$ and a p-stack \mathbf{F} μ -converges to x. For any $y \neq x$, there are disjoint supraopen neighborhoods U(x) and U(y). Since $\mathbf{V}_{\mu}(x) \subset \mathbf{F}$ and \mathbf{F} is a p-stack, both U(x) and X-U(y) are elements of \mathbf{F} . Thus \mathbf{F} is not finer than $\mathbf{V}_{\mu}(y)$, so \mathbf{F} does not μ -converge to y.

- $(2) \Rightarrow (3)$ It is obvious.
- $(3) \Rightarrow (1)$ Suppose that X is not $S T_2$. Then there must exist x, y such that $U(x) \cap U(y) \neq \emptyset$ for every supraopen neighborhoods U(x) and U(y) of x and y, respectively. Let \mathbf{F} be the ultrapstak finer than a p-stack $\mathbf{V}_{\mu}(x) \cup \mathbf{V}_{\mu}(y)$. Then \mathbf{F} is finer than $\mathbf{V}_{\mu}(x)$ and $\mathbf{V}_{\mu}(y)$, so the ultrapstack \mathbf{F} μ -converges to both x and y, contrary (2).

Let (X, μ) be a supratopological space and $\mathbf{F} \in pS(X)$. Then $\mathbf{B} = \{Scl(F) : F \in \mathbf{F}\}$ is a *p*-stack base on X. The *p*-stack generated by \mathbf{B} is denoted $Scl(\mathbf{F})$. We call $Scl(\mathbf{F})$ the supraclosure *p*-stack of \mathbf{F} .

THEOREM 3.13. Let (X, μ) be a supratopological space. Then the following are equivalent:

- (1) (X, μ) is supra-regular;
- (2) For every x in X, $\mathbf{V}_{\mu}(x) = Scl(\mathbf{V}_{\mu}(x))$.
- (3) If a p-stack \mathbf{F} μ -converges to x, then $Scl(\mathbf{F})$ μ -converges to x.

PROOF. (1) \Rightarrow (2) Let F be an element in $\mathbf{V}_{\mu}(x)$. There exists a supraopen neighborhood U(x) such that $U(x) \subset F$. Since X is supraregular, there is a supraopen neighborhood W(x) such that $W(x) \subset F$.

- $Scl(W(x)) \subset U(x) \subset F$. And since $Scl(W(x)) \in Scl(\mathbf{V}_{\mu}(x))$ and $Scl(\mathbf{V}_{\mu}(x))$ is a *p*-stack, $F \in Scl(\mathbf{V}_{\mu}(x))$.
- (2) \Rightarrow (3) Let a *p*-stack **F** μ -converge to *x*. Then $Scl(\mathbf{V}_{\mu}(x)) \subset Scl(\mathbf{F})$. Thus we get that $Scl(\mathbf{F})$ μ -converges to *x* by (2).
- $(3) \Rightarrow (1)$ Let U be a supraopen neighborhood of x for each $x \in X$. Since $\mathbf{V}_{\mu}(x)$ μ -converges to x, $Scl(\mathbf{V}_{\mu}(x))$ μ -converges to x by (3), and so $U \in Scl(\mathbf{V}_{\mu}(x))$. Then by the definition of supraclosure of p-stack, there is a supraopen neighborhood V in $\mathbf{V}_{\mu}(x)$ such that $V \subset Scl(V) \subset U$. \square
- For $\mathbf{F} \in pS(X)$, if all finite intersection of the elements of \mathbf{F} are non-empty, we say that \mathbf{F} has the finite intersection property (FIP).

THEOREM 3.14. Let (X, μ) be a supratopological space and $A \subset X$. Then X is supracompact iff for every p-stack \mathbf{F} with the FIP, there exist a finer p-stack \mathbf{G} than \mathbf{F} and an $x \in A$ such that \mathbf{G} μ -converges to x.

PROOF. Assume X is supracompact and \mathbf{F} is a p-stack with the FIP. Suppose any finer p-stack than \mathbf{F} does not μ -convergent to any point in X. Then we can assert that for each $x \in A$, there exist a supraopen neighborhood $U_x \in \mathbf{V}_{\mu}(x)$ and $F_x \in \mathbf{F}$ such that $U_x \cap F_x = \emptyset$. Thus we can find the collection \mathbf{U} of the supraopen neighborhoods $U_x \in \mathbf{V}_{\mu}(x)$ for each $x \in X$ such that $U_x \cap F_x = \emptyset$ for some $F_x \in \mathbf{F}$. This collection \mathbf{U} is a supraopen cover of X and for each $U_x \in \mathbf{U}$, $X - U_x$ is a member of the p-stack \mathbf{F} . Since X is supracompact, there is a finite subcover $\{U_{x1}, \ldots, U_{xn}\}$ of \mathbf{U} . Now we get $\cap (X - U_{xi}) = \emptyset$ for $X - U_{xi} \in \mathbf{F}$, where $i = 1, \ldots, n$. This is a contradiction, since \mathbf{F} is a p-stack with the FIP.

Conversely, assume X is not supracompact, and let \mathbf{U} be a supracopen cover of X with no finite subcover. If \mathbf{W} is the set of all finite union of members of \mathbf{U} , then $X - W \neq \emptyset$ for all $W \in \mathbf{W}$. Let $\mathbf{B} = \{X - W : W \in \mathbf{W}\}$. Then clearly \mathbf{B} is a p-stack base. Thus we get a p-stack $\mathbf{F}_{\mathbf{B}}$ generated by \mathbf{B} such that $\mathbf{F}_{\mathbf{B}}$ has the finite intersection property. Finally for any finer p-stack \mathbf{G} than $\mathbf{F}_{\mathbf{B}}$, we get that \mathbf{G} does not μ -converge to any element of X, contradicting (2).

We introduce the notion of p-supracompactness by using convergence of ultrapstaks and investigate some properties.

DEFINITION 3.15. A subset A of a supratopological space (X, μ) is p-supracompact if every ultrapstack containing A μ -converges to a point in A. The space (X, μ) is p-supracompact if X is p-supracompact.

EXAMPLE 3.16. Let $X = \{a, b, c\}$. Consider $\tau = \{\emptyset, \{a, b\}, \{b, c\}, X\}$. Then the supratopological space (X, τ) is p-supracompact.

However X is a nonempty finite set, a supratopological space on X may not be p-supracompact as the following example:

EXAMPLE 3.17. Let $X = \{a, b, c\}$ and let $\tau = \{\emptyset, \{a\}, \{a, b\}, \{b, c\}, X\}$ be a supratopology on X. And let \mathbf{H} be an ultrapstack containing a p-stack \mathbf{F} generated by $\{\{a, b\}, \{b, c\}, \{a, c\}\}\}$. Then it does not τ -converge to a point a in X. Thus the supratopological space (X, τ) is not p-supracompact.

THEOREM 3.18. Let $f:(X,\mu)\to (Y,\nu)$ be an S^* -continuous and surjective function. If X is p-supracompact, then Y is also p-supracompact.

PROOF. Let X be p-supracompact, and let \mathbf{H} be an ultrapstack in Y. If \mathbf{G} is an ultrapstack containing the p-stack base $\{f^{-1}(H): H \in \mathbf{H}\}$, then for some $x \in X$, \mathbf{G} μ -converges to x, and $\mathbf{H} = f(\mathbf{G})$ ν -converges to f(x), thus Y is p-supracompact.

THEOREM 3.19. A supratopological space (X, μ) is p-supracompact if and only if each supraopen cover of X has a two-member subcover.

PROOF. Suppose **H** is an ultrapstack in X such that it does not μ -converge to any point in X. Then for each $x \in X$, there is $U_x \in \mathbf{V}_{\mu}(x)$ such that $U_x \notin \mathbf{H}$. By Lemma 2.3(3), $X - U_x \in \mathbf{H}$ for all $x \in X$. Thus the collection $\mathbf{U} = \{U_x : x \in X\}$ is a supraopen cover of X. But \mathbf{U} has no two-element subcover of X, for if $U, V \in \mathbf{U}$ and $X \subset U \cup V$, then $(X - U) \cap (X - V) = X - (U \cup V) = \emptyset$, contradicting that \mathbf{H} is a p-stack. Conversely, let \mathbf{U} be a supraopen cover of X with no two-element subcover of X. Then $\mathbf{B} = \{X - U : U \in \mathbf{U}\}$ is a p-stack base, and any ultrapstack containing \mathbf{B} can not μ -converge to any point in X.

Remark. From Theorem 3.19 and Example 3.17, we can say every supracompact space is p-supracompact but the converse is not always true.

References

[1] D. C. Kent and W. K. Min, *Neighborhood spaces*, International Journal of Mathematics and Mathematical Sciences **32** (2002), no. 7, 387–399.

- [2] A. S. Mashhour, A. A. Allam, F. S. Mahmoud and F. H. Khedr, On supratopological spaces, Indian J. Pure Appl. Math 14 (1983), no. 4, 502-510.
- [3] W. K. Min, γ -sets and γ -continuous functions, International Journal of Mathematics and Mathematical Sciences **31** (2002), no. 3, 177–181.
- [4] _____, On supra-convergence of filters, Indian Journal of Pure and Applied Mathematics 34 (2003), no. 12, 1719–1726.

Department of Mathematics Kangwon National University Chuncheon 200-701, Korea *E-mail*: wkmin@cc.kangwon.ac.kr