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RIBAUCOUR TRANSFORMATIONS ON RIEMANNIAN
SPACE FORMS IN LORENTZIAN SPACE FORM

JOONSANG PARK

ABSTRACT. We study Ribaucour transformations on nondegener-
ate local isometric immersions of Riemannian space forms into
Lorentzian space forms with flat normal bundles. They can be
explained by dressing actions on the solution space of Lorentzian
Grassmannian systems.

1. Introduction

The study of isometric immersions of the space forms N"(c) with con-
stant sectional curvature c into the space forms N™1*(¢’) has been a clas-
sical problem in differential geometry. Nonexistence of an isometric im-
mersion of the hyperbolic space form H? = N2(—1) into R* = N3(0) by
Hilbert [3], existence of local isometric immersions of N"(c) in N2"~1(c+
1) and nonexistence of local immersions of N”(c) in N2"~2(c + 1) by
Cartan [2], and generalizations of Cartan’s work by Tenenblat and Terng
[7], [8], [9] are well-known, and many other results have been obtained
in [10] and [1], too. On the other hand, the theory of transformations
on the surfaces has been one of the main interests in the classical dif-
ferential geometry, which has been extended to the immersions of space
forms in space forms.

Recently the soliton theory in integrable systems has been developed
extensively so that it can be applied to submanifold geometry. Notice
that the sine-Gordon equation is a special kind of soliton equations,
which is related to local immersions of H? into R3. In this vein, the
so-called n-dimensional system or G/K system on a symmetric space
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developed by Terng [10] has succeeded in explaining some geometry of
submanifold N™(c) in N*+%(c/) [10], [1]. The author also showed that
some local isometric immersion of the Riemannian space form N"(c) in
the Lorentzian space form N"t%1(c) for ¢ = 1,0 or —1 is associated to
a solution of the Lorentzian Grassmannian system [6].

In this paper, we study a Ribaucour transformation on a local iso-
metric immersion of N™(c) which is nondegenerate and has flat normal
bundle into N™*%:}(c) by using a dressing action on the solution of the
Lorentzian Grassmannian system.

2. Preliminaries

In this section, we review basic knowledge and notations about Loren-
tzian submanifold geometry [4], [5] and introduce the G/K system [10].
Also, we briefly summarize the results in [6] to explain the relation-
ship between the immersions of the Riemannian space form N”(c) into
the Lorentzian space form N""*1(c) and the Lorentzian Grassmannian
systems.

Denote by R™" the vector space R™*" with the nondegenerate metric
of index 7, (Z,y)r = D> 1oy Tilli — Z::nrﬂ z;y;. It is well-known (cf. [4])
that the (m+ 1)-dimensional Lorentzian space form, that is, the simply-
connected complete connected (m + 1)-dimensional Lorentzian manifold
N™1(c) of the constant sectional curvature ¢ = 0,1, —1 is the Lorentzian
space R™1, the universal covering space of the Lorentzian sphere S"™!
or the Lorentzian hyperbolic space H™?!, respectively, where

Sl = {x e R™HL | (g,2); =1},
H™! = {z € R™? | (z,z)y = ~1}.

On the other hand, the Riemannian space forms N™(c) are the Eu-
clidean space R"™, the unit sphere S™, and the hyperbolic space H" for
c=0,1,-1.

DEFINITION 2.1. Suppose £+ 1 > n. A Riemannian submanifold
M™ in N*tk1l(c) is called nondegenerate if the image of the second
fundamental form (Im IT), = {II(X,Y) | X,Y € T,M} has dimension
n for any p € M™ and the inner product on Im I induced by ( , ) is
nondegenerate. We say that the curvature normals of M are spacelike (or
Lorentzian) if Im IT is a spacelike (or Lorentzian, respectively) subspace
of the normal bundle v(M).
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We now explain the local geometry of submanifolds N"(c) in Nkl
(c). We denote by I, the pxp identity matrix and J,= diag(1,...,1,-1)
is a p X p diagonal matrix.

PRroPOSITION 2.2. ([6]) Let X : N*(c) — N"t®!(¢) be a non-
degenerate local isometric immersion with a flat normal bundle, and
assume k + 1 > n. Then, for a local parallel normal frame e, (n+1 <
a <n+k+1), there exist a curvature coordinate system (x1,... ,Zy),
amap b= (by,...,b,)" and an n x (k + 1) matrix-valued B, = (b;;)
such that ByJy41Bt = I, or B1Jy+1 Bt = J,, and the first and second
fundamental forms are given by

n n k+1
I=Y"b}dz}, =) > bjbida? ®eny;.
i=1 i=1 j=1
The curvature normals are spacelike when BlJ;H_le = I,, and

Lorentzian when By J 1Bt = J,.

To describe Riemannian submanifolds in N**%1(c), we will use a spe-
cial partial differential equation called G/K system, which is introduced
by Terng in [10], and we mention some results from [10], which will be
used in our case.

Let G/K be a rank n symmetric space with the involution 0 : G — G
on the Lie algebra G of G, § = K + P the Cartan decomposition, and
A C P a maximal abelian subalgebra with a basis {a1,...,a,}. Let At
denote the orthogonal complement of A in G with respect to the Killing
form. G/K system for v: R® — PN AL is

(2'1) [aiavzj] - [aj’vxi] = [[ai’v]’ [aj’vH, 1<i#j<n,

where v, = g—;.
It is known that v is a solution of (2.1) if and only if the G ® C-valued

connection 1-form on the trivial principal bundle R x G on R”

(2.2) 0= (aix+[as,v))dz;

=1

is flat for any A € C.
To apply the theory of G/K system to our case, we take the Loren-

tzian Grassmannian G./K system related to the isometry group G. of
NntkL(e),
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Let M4 be the set of p x ¢ matrices, R™ = M,,x1, J.,1 = diag(c, 1,
...,1,—1). Denote u = (up,u1,. .- ,uUm)t € R™*1. For ¢ =0,1,—1, the
isometry groups G, are given by

Isom(R™T%1) = {(é g) ’ A€ O(m+k1), L€ R"+k’1} ,

O(n+k+1,1) = {A€GLn+k+2,R) y AtTaA=Ta},
O(n+k,2) = {A € GL(n+k+2,R) ‘ AT 1 A= J_l,l} :

respectively. Here the inner product on R**%:2 is defined by

n+k

t
(U,?J)z =Uu J—1,1 v = —ugUo + 5 UiV — Un4k+1Un+k+1,
=1

and we identify R"t%1 with {1} x R**%1 ¢ R**%2 by X < (1, X).
We can explain G, in one way using J. ;. That is,

Ge={A€GLn+k+2R) | AJea A =Jea b

The Lie algebra of G, is

G = {(2 _cétj> ) Y €o(n+k,1), §6R”+k+l},

where J = Jy 1, which we will abuse the notation whatever the size is.
Now, we recall G./K systems related to the isometry group G, of
N7™tk1(c) defined in [6].

DEFINITION 2.3. Assume k+1 > n. Put § = diag(dzy,... ,dz,). For
beR™ = Mnx1, F = (fij) € Muxn with fi; =0and G € M(x11-nyxn,
(1) (F,G,b) is a solution associated to G. of spacelike type if

0 —cbté 0 0
5b 6F—F'%S A 0

(2:3) Os=10 —x6 GSF—F5 §GtJ
0 0 —G§ 0

is a family of flat connection 1-form for any A € C,
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(ii) (F,G,b) is a solution associated to G. of Lorentzian type if

0 —cbtd 0 0
|8y F—F' 0 pY)
(2.4) bo=1 9 0 0 G5

0 -AJé  J6G* JSF'J — Fé

is a family of flat connection 1-form for any A € C.
Since 6, in (2.3) is flat for any A, we have

i [0 —cbts L\ (8F'—F5 5G'J
A dA—(ab 5F—Ft5)’BdB =\ —es 0

for some A € M(ni1)x(nt1) and B = (g:) € O(k,1), where By €
Mn)((k:—}—l): B; € M(k+1—n)x(k+1)- For 0L in (2.4), there is B = (gi) €
O(k, 1) such that

BdB‘I:( 0 —Go )

J6Gt JOFtJ — F§
The following fact is proved in [6];

PROPOSITION 2.4. Let k+1 > n. Suppose X is a nondegenerate local
isometric immersion of N™(c) into N"*®1(c) with a flat normal bundle
as in Proposition 2.2. Then there exists a solution (F,G,b) associated
to G. such that

F= (%), BdJB=6F - Fy,
when M has spacelike curvature normals, and

_ | (bi)ay ty_ ¢
F_( 2 ) BydJB!J = J6F'J — F§,

when M has Lorentzian curvature normals.

Conversely, if (F,G,b) is a solution associated to G, of the spacelike
type (or the Lorentzian type), then there exists a nondegenerate iso-
metric immersion X of N"(c) with a flat normal bundle into N™"*%1(c),
which has spacelike (or Lorentzian) curvature normals, a parallel normal
frame {e,}, a coordinate system (1, ... ,Z,), and an My (x41)-valued
map By with BiJB: = I (or BiJBt = J, respectively) such that the
first and second fundamental forms are given by

n k+1

I= Zn: bldey, I =YY bbide} ® eny;.
=1

i=1 j=1
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3. Transformations

In this section, we construct a dressing action ([11]) on the space
of solutions of the G./K system, which turns out to be a Ribaucour
transformation of N™(c) in N™"**1(c). This kind of action was used in
[1] to get Ribaucour transformations of N™(c) in N™"*¥(c).

Put J = diag(1,...,1,-1), J. = diag(c,1,...,1) and J,; = diag(c,

1,...,—1). The G./K-reality conditions are
g(A) Jea g\t = Je1s

(3.1) ("8~ ) o ("5~ ) = 9N,
g(A) = g(N).

Notice that trivializations E of §; and E, of §,, which mean E]'dE =
05 and E;'dE, = 6, satisfy the reality conditions (3.1). Also, E; and
E, are holomorphic for any A € C.

For z = (29,21, ,25)t € R™ and w = (wy,... ,wpy1)t € RF?
such that

2|2 = 2'Jez=1 and [Jw|}, =w'Jw =1,
1 228 d.  —izwtJ
2\ qw2td, wwtJ |
Define g5 (A) for s € R with s # 0 and A € C by

ot (432820 ) (4320 )

Then it is easy to see that g5 () is invertible, satisfies the reality con-
ditions (3.1), is holomorphic at A = oo, and

2s —sd.zzt  =AJ.zwt
— —_— —1 == T T & c ¢
(3.2) qs,ﬂ'()\) = qS,rr( A) I+ A2 + s2 < Mwzt —sJww? > '

For convenience, we use £ = E  or E=FE, . Let

(&) =s-i97(2).

Since ¢s r(A) satisfies the reality conditions (3.1), we can show that
7 e R**! and @ € R®!, and from

I2112,c = Bl = (B(z, —is)"" (,5,))
= (ii;)t*]c,l (11)

= |l2)%,c = I,y
=0,

t

e (Blz,~is)™ (;3,))
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we have ||2||n,c = || D]lk,1-

/\At .
s s ol -1 22J. —zsz
Put 2 = 5/|Blles 0= /il and 7 = § (220 250
It is easy to show that gs »(A)Egs z(A) ™" is holomorphic in A e C by

residue calculations at A = +is. Let E = Eqs.#(A\)71, that is,

- I- J 25t J 2wt
(3.3) E-E A;ﬂ;sz ft T 2.
Azizr]w I—/\2+32wa
Now, from E~1dE = 37 (a;\ + [as, v])dx; and g5 7()) is holomorphic
at A = 0o, we can prove by direct calculation that § = E-1dE is of the
form
. n
(3.4) 0="> (a)+ [ai, 9])dz;,
i=1

{0 —Jgtg - (0 —J.EtJ
andwhenwewrltev—-(§ 0 >and’v—<‘5 0 , we

obtain

(3.5) £ = g—g(qu‘ft),

(Tt 7t
where ( 50 (Je€"J) *) is the orthogonal projection of (77 Je J)

0 3 ¢
onto P N A+,

By the above argument, we get

THEOREM 3.1. Let (F,G,b) be a solution associated to G. of the
spacelike type (or the Lorentzian type) whose corresponding one param-
eter family of flat connections is 6 as in (2.3) (or (2.4)). Then we have
a new solution (F,G,b) corresponding to 6 as in (3.4). In particular,
when it is a spacelike type,

39 (6 &)= (6 &)-3uo.,

and when it is a Lorentzian type,

(3.7) (g f;) = (2 g) - %(Ju?ét)*L,
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where (Cij)*s means ¢; ;4+1 =0 and (CU)*L means Cp4+1-n+i,i+1 = 0.

Hence we obtain a new solution X : N”(c) — N™t%1(¢) from a given
immersion X : N™(c) — N™*%1(c) by (F,G,b) from (F,G,b). We will
investigate on how X and X are related geometrically. Let E and E
be trivializations corresponding to 8 and 6 in (2.3) (or (2.4)) and (3.4),
respectively. Write

E(“’(’):(Agw) B(:S)‘l)’ E(””’O):<Aéx) B(E)-l)'

From (3.3), we have

(3.8) A=A(I-2J.33%, B™'=B7Y(I-2Juwdt).
Put
B —F (Ingl Bo_l) B =F (Ingl 30_1) .
In fact, if we write EZ(z,1) = (X,e1,... ,€n,€nt1,- -+ »€ntki1), then X

is the immersion of N"(c) into N***1(c), e; = £52- (1 < ¢ < n) are
a tangent frame and e, (n +1 < a < n+ k + 1) are a parallel normal
frame to X. By a direct calculation, those trivializations are related by

~ 2 sJ.2 . .
(3.9) E'=F! (I v (ABthw> (53t )\thBJ)).

Now we conclude that

THEOREM 3.2. Suppose X : N™(c) — N™t%1(c) is a nondegenerate
local isometric immersion with flat normal bundle. Then the g5 .())
action on X gives rise to a new immersion X : N*(c) — N™t%1(¢) of
the same kind, and X and X are in a Ribaucour transformation.

PROOF. Supposg X has spacelike normals. Let E be a trivialization
of 0 in (2.4) and E; = E g, 7(z)(A) 7!, Write

Eé (33, 1) = (X(:E), €1 (‘T)’ s ,en(:v), €n+1 (.’B), coe 5y Cntk4l (.’II)),

é(l‘, 1) - (X(x)’él(x)7 s 7én($)7én+1(‘7})a s aén+k+1(m))'
)

cospJ .2

At . At
siantJu?> (cospzt sinpw JBJ)),
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where p = arctan % Put

B =cospi(a)!, v =sinpi(z)'JBJ, n=2E§(x,1)< i )

sin p Bt Ji(z)

Then it follows from (3.10) that

X :X—IBOTI?
& =e— Bin, (1<i<n),
€a = €a— Yol m+1<a<n+k+1).

Hence X +7;6; = X +7;6; and X +7q€q = X +7464 for r; = —Bo/0i and
ra = —Po/Ya- Therefore, X and X are in a Ribaucour transformation.

The case that X has Lorentzian normals is similar as above, so we

will omit the proof. O
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