References
- R. B. Bapat, S. Pati and S. Z. Song, Rank preservers of matrices over max algebra, Linear and Multilinear algebra 48 (2000), 149-164 https://doi.org/10.1080/03081080008818665
- L. Beasley, Linear transformations on matrices: The invariance of commuting pairs of matrices, Linear and Multilinear Algebra 6 (1978), 179-183 https://doi.org/10.1080/03081087808817236
- L. Beasley, Rank k-preservers and preservers of sets of ranks, Linear Algebra Appl. 55 (1983), 11-17 https://doi.org/10.1016/0024-3795(83)90163-5
- L. Beasley, Linear operators on matrices: The invariance of rank-k matrices, Linear Algebra Appl. 107 (1988), 161-167 https://doi.org/10.1016/0024-3795(88)90242-X
-
L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear transformations preserving the Grassmannian over Mn(
$Z_+$ ), Linear Algebra and Its Applications, 393 (2004), 39-46 https://doi.org/10.1016/j.laa.2003.08.018 - L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear preservers of zeros of matrix polynomials, Linear Algebra and Its Applications 401 (2005), 325-340 https://doi.org/10.1016/j.laa.2004.08.015
- L. Beasley, A. Guterman, S. G. Lee, and S. Z. Song, Linear preservers of extremes of rank inequalities over semirings: Row and column ranks, Linear Algebra and Its Applications 413 (2006), 495-509 https://doi.org/10.1016/j.laa.2005.03.024
- L. Beasley, S. G. Lee, and S. Z. Song, Linear operators that preserve pairs of matrices which satisfy extreme rank properties, Linear Algebra and Its Applications 350 (2002), 263-271 https://doi.org/10.1016/S0024-3795(02)00293-8
- L. Beasley and N. Pullman, Nonnegative rank preserving operators, Linear Algebra Appl. 65 (1985), 207-223 https://doi.org/10.1016/0024-3795(85)90098-9
- L. Beasley and N. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77 https://doi.org/10.1016/0024-3795(84)90158-7
- L. Beasley and N. Pullman, Fuzzy rank-preserving operators, Linear Algebra Appl. 73 (1986), 197-211 https://doi.org/10.1016/0024-3795(86)90240-5
- L. Beasley and N. Pullman, Term-rank, permanent and rook polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46 https://doi.org/10.1016/0024-3795(87)90302-8
- L. Beasley and N. Pullman, Semiring rank versus column rank, Linear Algebra Appl. 101 (1988), 33-48 https://doi.org/10.1016/0024-3795(88)90141-3
- L. Beasley and N. Pullman, Linear operators strongly preserving primitivity, Linear and Multilinear Algebra 25 (1989), 205-213 https://doi.org/10.1080/03081088908817942
- L. Beasley and N. Pullman, Linear operators preserving digraphs whose maximum cycle length is small, Linear and Multilinear Algebra 28 (1990), 111-117 https://doi.org/10.1080/03081089008818035
- L. Beasley and N. Pullman, Linear operators preserving properties of graphs, Congruss Numerantium 70 (1990), 105-112
- L. Beasley and N. Pullman, Linear operators strongly preserving commuting pairs of Boolean matrices, Linear Algebra Appl. 132 (1990), 137-143 https://doi.org/10.1016/0024-3795(90)90059-L
- L. Beasley and N. Pullman, Linear operators preserving idempotent matrices over fields, Linear Algebra Appl, 146 (1991), 7-20 https://doi.org/10.1016/0024-3795(91)90016-P
- L. Beasley and N. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl. 160 (1992), 217-229 https://doi.org/10.1016/0024-3795(92)90448-J
- L. Beasley and N. Pullman, Linear operators that strongly preserve graphical properties of matrices, Discrete Math. 104 (1992), 143-157 https://doi.org/10.1016/0012-365X(92)90329-E
- L. Beasley and S. G. Lee, Linear operators preserving r-potent matrices over semirings, Linear Algebra Appl. 164 (1992), 589-600 https://doi.org/10.1016/0024-3795(92)90394-P
- L. B. Beasley and S. Z. Song, A comparison of nonnegative real ranks and their preservers, Linear and Multilinear Algebra 31 (1992), 37-46 https://doi.org/10.1080/03081089208818120
- L. B. Beasley and S. Z. Song, Linear operators that preserve zero-term rank over fields and rings, Linear Algebra and Its Applications 341 (2002), 143-149 https://doi.org/10.1016/S0024-3795(01)00349-4
- L. Beasley, S. Z. Song, K. T. Kang, and B. Sarma, Column ranks and their preservers over nonnegative real matrices, Linear Algebra and Its Applications 399 (2005), 3-16 https://doi.org/10.1016/j.laa.2004.04.022
- L. B. Beasley, S. Z. Song and S. G. Lee, Linear operators that preserve zero-term rank of Boolean matrices, J. Korean Math. Soc. 36 (1999), no. 6, 1181-1190
- L. B. Beasley, S. Z. Song and S. G. Lee, Zero-term rank preservers, Linear and Multilinear Algebra 48 (2001), no. 4, 313-318 https://doi.org/10.1080/03081080108818677
- A. Berman, D. Hershkowitz, and C. R. Johnson, Linear transformations that preserve certain positivity classes of matrices, Linear Algebra Appl. 68 (1985), 9-29 https://doi.org/10.1016/0024-3795(85)90205-8
- E. P. Botta, Linear maps that preserve singular and nonsingular matrices, Linear Algebra Appl. 20 (1978), 45-49 https://doi.org/10.1016/0024-3795(78)90027-7
- E. P. Botta, Linear transformations preserving the unitary group, Linear and Multilinear Algebra 8 (1979), 89-96 https://doi.org/10.1080/03081087908817304
- E. P. Botta and S. Pierce, The preservers of any orthogonal group, Pacific J. Math. 70 (1977), 347-359 https://doi.org/10.2140/pjm.1977.70.347
- G. H. Chan and M. H. Lim, Linear transformations on symmetric matrices that preserve commutativity, Linear Algebra Appl. 47 (1982), 11-22 https://doi.org/10.1016/0024-3795(82)90222-1
- G. H. Chan and M. H. Lim, Linear transformations on tensor spaces, Linear and Multilinear Algebra 14 (1983), 3-9 https://doi.org/10.1080/03081088308817538
- G. H. Chan, M. H. Lim, and K. K. Tan, Linear preservers on powers of matrices, Linear Algebra Appl., 162 (1992), 615-626 https://doi.org/10.1016/0024-3795(92)90396-R
- G. H. Chan, M. H. Lim, and K. K. Tan, Linear preservers on matrices, Linear Algebra Appl. 93 (1987), 67-80 https://doi.org/10.1016/S0024-3795(87)90312-0
- M. D. Choi, A. A. Jafarian, and H. Radjavi, Linear maps preserving commutativity, Linear Algebra Appl. 87 (1987), 227-241 https://doi.org/10.1016/0024-3795(87)90169-8
- J. Dieudonne, The Automorphisms of the Classical Groups, Mem. Amer. Math. Soc. 2 (1949)
- D. Z. Djokovic, Linear transformations of tensor products preserving a fixed rank, Pacific J. Math., 30 (1969), 411-414 https://doi.org/10.2140/pjm.1969.30.411
- G. Frobenius, Uber die Darstellung der endlichen Gruppen durch lineare Substitutionen, Sitzungsber. Deutsch. Akad. Wiss. Berlin, (1897), pp. 994-1015
- R. Grone, Isometries of Matrix Algebras, Ph. D. Thesis, Univ. of California, Santa Barbara, (1976)
- R. Grone and M. Marcus, Isometries of matrix algebra, J. Algebra 47 (1977), 180-189 https://doi.org/10.1016/0021-8693(77)90218-6
- D. Hershkowitz and C. R. Johnson, Linear transformations which map the Pmatrices into themselves, Linear Algebra Appl. 74 (1986), 23-38 https://doi.org/10.1016/0024-3795(86)90113-8
- F. Hiai, Similarity preserving linear maps on matrices, Linear Algebra Appl. 97 (1987), 127-139 https://doi.org/10.1016/0024-3795(87)90145-5
- R. Horn, C. K. Li, and N. K. Tsing, Linear operators preserving certain equivalence relations on matrices, SIAM J. Matrix Anal. Appl. 12 (1991), 195-204 https://doi.org/10.1137/0612015
- S. G. Hwang, S. J. Kim and S. Z. Song, Linear operators that preserve maximal column rank of Boolean matrices, Linear Multilinear Algebra 36 (1994), no. 4, 305-313 https://doi.org/10.1080/03081089408818305
- C. R. Johnson and S. Pierce, Linear maps on hermitian matrices: The stabilizer of an inertia class II, Linear and Multilinear Algebra 19 (1986), 21-31 https://doi.org/10.1080/03081088608817701
-
S. Kantor, Theorie der Aquivalenz von linearen
$\infty$ Scharen bilinearer Formen, Sitzungsber. Munchener Akad., (1987), pp. 367-381 - S. Kirkland and N. J. Pullman, Linear operators preserving invariants of nonbinary matrices, Linear and Multilinear Algebra 33 (1992), 295-300 https://doi.org/10.1080/03081089308818200
- A. Kovacs, Trace preserving linear transformations on matrix algebras, Linear and Multilinear Algebra 4 (1976/77), 243-250 https://doi.org/10.1080/03081087708817158
- C. K. Li, Linear operators preserving the numerical radius of matrices, Proc. Amer. Math. Soc. 99 (1987), 601-608
- C. K. Li, L. Rodman, and N. K. Tsing, Linear operators preserving certain equivalence relations originating in system theory, Linear Algebra Appl. 161 (1992), 165-226 https://doi.org/10.1016/0024-3795(92)90011-X
- C. K. Li, B. S. Tam, and N. K. Tsing, Linear operators preserving the (p,q) numerical range, Linear Algebra Appl. 110 (1988), 75-89 https://doi.org/10.1016/0024-3795(83)90133-7
- C. K. Li and N. K. Tsing, Duality between some linear preserver problems: The invariance of the c-numerical range, the c-numerical radius and certain matrix sets, Linear and Multilinear Algebra 23 (1988), 353-362 https://doi.org/10.1080/03081088808817888
- C. K. Li and N. K. Tsing, Duality between some linear preserver problems.II. Isometries with re-spect to c-spectral norms and matrices with fixed singular values, Linear Algebra Appl. 110 (1988), 181-212
- C. K. Li and N. K. Tsing, Linear operators preserving unitarily invariant norms on matrices, Linear and Multilinear Algebra 26 (1990), 119-132 https://doi.org/10.1080/03081089008817969
- C. K. Li and N. K. Tsing, Linear operators preserving certain functions on singular values of ma-trices, Linear and Multilinear Algebra 26 (1990), 133-143 https://doi.org/10.1080/03081089008817970
- C. K. Li and N. K. Tsing, Linear operators preserving unitary similarity invariant norms on ma-trices, Linear and Multilinear Algebra 27 (1990), 213-224 https://doi.org/10.1080/03081089008818013
- C. K. Li and N. K. Tsing, Duality between some linear preserver problems. III. c-spectral norms on (skew)-symmetric matrices and matrixes with fixed singular values, Linear Algebra Appl. 143 (1991), 67-97
- C. K. Li and N. K. Tsing, Linear operators leaving a class of matrices with fixed singular values invariant, Linear and Multilinear Algebra, 34 (1993), 41-49 https://doi.org/10.1080/03081089308818207
- R. Loewy, Linear maps which preserve an inertia class, SIAM J. Matrix Anal. Appl. 11 (1990), 107-112 https://doi.org/10.1137/0611007
- R. Loewy and S. Pierce, Linear preservers of balanced singular inertia classes, Linear Algebra and its Applications, 201 (1994), 61-77 https://doi.org/10.1016/0024-3795(94)90105-8
- M. Marcus, Linear operators leaving the unitary group invariant, Duke Math. J. 26 (1959), 155-163 https://doi.org/10.1215/S0012-7094-59-02615-8
- M. Marcus, Linear operations on matrices, Amer. Math. Monthly 69 (1962), 837-847 https://doi.org/10.2307/2311230
- M. Marcus, Linear transformations on matrices, J. Res. Nat. Bur. Standards 75B (1971), 107-113
- M. Marcus and H. Mine, On the relation between the permanent and the determinant, Illinois J. Math. 5 (1962), 327-332
- M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math. 9 (1959), 1215-1221 https://doi.org/10.2140/pjm.1959.9.1215
- S. Pierce, Linear maps on algebraic groups, Linear Algebra Appl. 162 (1992), 237-242 https://doi.org/10.1016/0024-3795(92)90378-N
- S. Pierce and W. Watkins, Invariants of linear maps on matrix algebras, Linear and Multilinear Algebra 6 (1989/79), 185-200
- S. Pierce et al., A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992), 1-119 https://doi.org/10.1080/03081089208818176
- G. Polya, Aufgabe 424, Arch. Math. u. phys. 203 (1913), 271
- H. Radjavi, Commutativity-preserving operators on symmetric matrices, Linear Algebra Appl. 61 (1984), 219-224 https://doi.org/10.1016/0024-3795(84)90032-6
- R. Sinkhorn, Linear adjugate preservers on complex matrices, Linear and Multilinear Algebra 12 (1982/83), 215-222 https://doi.org/10.1080/03081088208817485
- S. Z. Song, Linear operators that preserve column rank of Boolean matrices, Proc. Amer. Math. Soc. 119(4) (1993), 1085-1088
- S. Z. Song, Linear operators that preserve column rank of fuzzy matrices, Fuzzy Sets and Systems 62 (1994), 311-317 https://doi.org/10.1016/0165-0114(94)90115-5
- S. Z. Song, On spanning column rank of matrices over semirings, Bull. Korean Math. Soc. 32 (1995), 337-342
- S. Z. Song, A comparison of maximal column ranks of matrices over related semirings, J. Korean Math. Soc. 34 (1997), no. 1, 213-225
- S. Z. Song, Linear operators that preserve maximal column ranks of nonnegative integer matrices, Proc. Amer. Math. Soc. 126 (1998), 2205-2211
- S. Z. Song, L. Beasley, G. S. Cheon and Y. B. Jun, Rank and perimeter preserver of Boolean rank-1 matrices, J. Korean Math. Soc. 41 (2004), no. 2, 397-406 https://doi.org/10.4134/JKMS.2004.41.2.397
- S. Z. Song and S. G. Hwang, Spanning column ranks and their preservers of nonnegative matrices, Linear Algebra and Its Applications 254 (1997), 485-495 https://doi.org/10.1016/S0024-3795(96)00514-9
- S. Z. Song and K. T. Kang, Column ranks and their preservers of matrices over max algebra, Linear and Multilinear Algebra 51 (2003), no. 3, 311-318 https://doi.org/10.1080/0308108031000069173
- S. Z. Song and K. T. Kang, Linear maps that preserve commuting pairs of matrices over general Boolean algebra, J. Korean Math. Soc. 43 (2006), no. 1, 77-86 https://doi.org/10.4134/JKMS.2006.43.1.077
- S. Z. Song, K. T. Kang and Y. B. Jun, Linear preservers of Boolean nilpotent matrices, J. Korean Math. Soc. 43 (2006), no. 3, 539-552 https://doi.org/10.4134/JKMS.2006.43.3.539
- S. Song and S. Lee, Column ranks and their preservers of general Boolean matrices, J. Korean Math. Soc. 32 (1995), 531-540
- S. Z. Song and S. R. Park, Maximal column rank preservers of fuzzy matrices, Discussiones Mathematicae - General Algebra and Applications 21 (2001), no. 2, 207-218 https://doi.org/10.7151/dmgaa.1038
- S. Z. Song, S. D. Yang, S. M. Hong, Y. B. Jun and S. J. Kim, Linear operators preserving maximal column ranks of nonbinary Boolean matrices, Discussiones Mathematicae-General Algebra and Applications 20 (2000), no. 2, 255-265 https://doi.org/10.7151/dmgaa.1021
- W. Watkins, Linear maps that preserve commuting pairs of matrices, Linear Algebra Appl. 14 (1976), 29-35 https://doi.org/10.1016/0024-3795(76)90060-4
Cited by
- Extreme Preservers of Zero-term Rank Sum over Fuzzy Matrices vol.50, pp.4, 2010, https://doi.org/10.5666/KMJ.2010.50.4.465
- EXTREME PRESERVERS OF FUZZY MATRIX PAIRS DERIVED FROM ZERO-TERM RANK INEQUALITIES vol.33, pp.3, 2011, https://doi.org/10.5831/HMJ.2011.33.3.301