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TUBES IN SINGULAR SPACES
OF NONPOSITIVE CURVATURE

Young Do CHAI AND DOOHANN LEE

ABSTRACT. In this paper, we estimate area of tube in a CBA(0)-
space with extendible geodesics. As its application, we obtain an
upper bound of systole in a nonsimply connected space of nonpos-
itive curvature. Also, we determine a relative growth of a ball in a
CBA(0)-space to the corresponding ball in Euclidean plane.

1. Introduction

Bishop-Giinther inequality ([8]) states that volume of n-ball in Rie-
mannian manifolds of non-positive sectional curvature is not less than
that of the ball with same radius in Euclidean n-space. This enables
us to characterize Riemannian manifolds in terms of local behavior of
volume functional.

The aim of this paper is to study tubes in CBA(k)-space in terms
of definition of area of surface by Nikolaev ([12]). A CBA(k)-space is a
singular metric space of curvature bounded above by k in the sense of
Alexandrov ([1]). Riemannian manifolds of sectional curvature bounded
above by k are CBA(k)-spaces and trees with intrinsic metric, locally
convex polyhedrons and many other topological spaces are any other
CBA(k)-spaces. CBA(k)-spaces share many valuable geometric proper-
ties with Riemannian manifolds. Recently Nagano ([11]) proved a sphere
theorem for 2-dimensional CBA(1)-space and Mese ([10]) obtained a uni-
versal constant C so that L2 — CA > 0, where L is the length of the
boundary and A is the area of minimal surface in 2-dimensional CBA (k)-
space.
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On the other hand, Nikolaev ([12]) introduced area of surface in 2-
dimensional CBA(k)-space and gave the solution of Plateau’s problem
using his definition.

In this paper, we take Nikolaev’s definition for the area of surface and
generalize Bishop-Giinther inequality in 2-dimensional singular Hadam-
ard space by comparing the area of surface of a parallel set of a geodesic
segment to the Lebesgue measure of the corresponding set in R?.

In what follows, we denote by A area of surface in CBA(k)-space
and by S Lebesgue measure in its model space. Our main result is the
following theorem:

THEOREM 1.1. Let X be a 2-dimensional singular Hadamard space
with extendible geodesics, and let «y : [0,£] — X be a geodesic segment of
given length parametrized by arclength. Let 7 be a straight line segment
in R? with the same length as . Then

A(T(v, 7)) 2 S(To(¥,7)),
where T'(v,r) Is an r-neighborhood of v in X and To(%,r) is an -
neighborhood of 7 in R?.

As an application, we find an upper bound of systole of X (cf. The-
orem 2.3). Also, we obtain a lower bound of area of surface of a tube
about a convex closed curve in 2-dimensional singular Hadamard spaces
and prove that relative growth of area of disc in X with respect to a
fixed disc D is faster than that of area of disc in Euclidean plane R?.

2. Area comparison theorems in 2-dimensional singular
Hadamard spaces

Let (X, d) be an arbitrary metric space. The length L(v) of a con-
tinuous curve 7 : [a,b] — X is defined by

n—1
L(v) = SUPZ d(Fi, Piy1),
=1
where Pi, P,,..., P, is an arbitrary sequence of points of v numbered

in the order of their position on the curve, and the supremum is taken
over all such sequence of points. The metric d on X is called intrinsic if
for any p,g € X

d(p,q) = inf L(7),

where the infimum is taken over all continuous curves 7 joining p and
g. A continuous curve v : [a,b] — X is called a unit speed geodesic
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in X if each ¢ € [a,b] has an open neighborhood V' C [a, b] such that
d(’y(tl),’y(tg)) = ]tl tg‘ for all ¢1,t0 € V. If d(’y(tl),’}/(tg)) = lt1 tgl
for all ¢1,t2 € [a, b], then a geodesic 7 : [a,b] — X is called a minimizer
joining v(a) and ~(b). If every geodesic in X can be extended infinitely in
both direction, then X is said to be geodesically complete. A subset U C
X is said to be convex if any two points in U are joined by a minimizer
of X lying inside U. A triangle A = (01,02, 03) in a metric space X is
a set consisting of three minimizers o1, 02, 03 called the sides, which are
pairwisely joining three points called the vertices. The perimeter of the
triangle is the sum of the lengths of the sides 01,09, 03.

For &k € R, M} denotes a Lobachevskii plane of curvature k when

k < 0, a Fuclidean plane when & = 0 and a sphere of radius ﬁ when

k> 0. Let r(k) = oo if k < 0, and r(k) = z if k > 0. We denote the
intrinsic metric on My, by |- [g. If A = (01,02,03) is a triangle in X, a
triangle A = (&1, 02,03) in My is called a comparison triangle for A if
L(5;) = L(0;), for 1 <14 < 3. A triangle A in a metric space X is said
to be k-thin if its perimeter P(A) < 27 r(k) and it satisfies

d(z,y) < TPk,

for all points z,y on sides of A and the corresponding points Z, ¢ on the
sides of the comparison triangle A C M.

DEFINITION 2.1. A locally compact intrinsic metric space X is called
a CBA(k)-space if each point p € X has a convex k-domain Ry, that is,
every triangle A of the perimeter P(A) < 2w r(k) in Ry is k-thin.

DEFINITION 2.2. For § > 0, let 71,72 : [0,0] — X be a pair of unit
speed geodesics emanating from a point p in a complete CBA(k)-space
X. For s,t € (0,6] let A,, C M be the comparison triangle for the
triangle Ag = (p,71(s),7v2(¢)). Then the angle between v, and 7, is
defined by

4(71772) = SI%EO a(s,t),

where (s, t) is the angle of A, at 7 in M. Two geodesics are said to be
equivalent if the angle between them is zero. The direction space DpX
at p in a complete CBA(k)-space is defined as the set of the equivalence
classes of geodesics in X emenating from p.

The following proposition states that a direction space of a topological
manifold is complete under angle metric.
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PROPOSITION 2.1. For a point p in a topological manifold X, a ge-
odesic starts out in every direction at p, and the direction space DpX
with the angle metric at p is compact for each p € X.

Proof. See [2]. O

We are especially interested in complete simply connected spaces of
nonpositive curvature, since they have the property that the distance
function between geodesics is convex.

DEFINITION 2.3. (X, d) is called a singular Hadamard space if X is
a complete simply connected metric space with an intrinsic metric d of
nonpositive curvature in the sense of Alexandrov.

Hadamard manifolds, trees with complete intrinsic metrics and Eu-
clidean buildings are the important examples of singular Hadamard
space.

We take the definition of area of surface by Nikolaev ([12]). Let us
be more concrete. Denoting by D? the closed unit disc on a Euclidean
plane R?, we call a continuous mapping of D? into a convex k-domain Ry,
of a CBA(k)-space (X, d) a parametrized surface. A triangulation of an
arbitrary polygon inscribed in D? is called a triangulation of D?, and the
vertices of the triangles of the triangulation are called the triangulation
vertices. Consider a triangulated disc D? with a triangulation vertices
vi, 2= 1,2,...,n, and a parametrized surface f : D> — Ry. To each v;
we correspond a point ¥; € Ry, such that points ¥; and 9; coincide if and
only if f(v;) and f(v;) coincide. We join the points @; with each other by
geodesics in the same order as the disc’s triangulation vertices are joined
to each other. If points 9; and ¥; coincide, then we take this point itself
as the geodesics. Thus we obtain a collection of triangles in a convex k-
domain Rg, and we call it a generalized polyhedron of the parametrized
surface f. Also, for a sequence ®, of generalized polyhedra, (®,) €
®(f) means that the maximum of d(9;, f(v;)) and the largest side of
the triangles of the trangulation tend to zero as n increases. The area
A(®,,) of a generalized polyhedron @, is defined as the sum of Lebesgue
measures of the comparison triangles on a model surface M for the
triangles of ®,,.

DEFINITION 2.4. The area of a surface f is defined by
A(f) = inf{lim A(®,)},
where (®,,) € ®(f).
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Definition of area of surface in CBA(k)-space is completely analogous
to Lebesgue’s definition of surface area. Therefore, the properties of area
of surface in CBA(k)-space can be proved completely analogously. The
proofs of the analogous propositions for surfaces in R? can be found in
([6]). Therefore, we present the following proposition without proof.

PROPOSITION 2.2. (Kolmogorov’s Principle) If h is a nonexpanding
mapping from Ry, into Ry, that is, d(h(z1), h(z2)) < d(z1,x2) and f is
a surface in Ry, then

A(ho f) < A(f)-

From now on, a 2-dimensional CBA(k)-space means a 2-dimensional
topological manifold endowed with an intrinsic metric of curvature boun-
ded above in the sense of Alexandrov. We define a geodesic hinge
(71,72, @) at a point p in a 2-dimensional CBA(k)-space X as a configu-
ration of two unit speed minimizers ~; : [0, ¢;] — M, i = 1,2, emanating
from a common point p which meet at an angle a. Let r, be the in-
jectivity radius of p € X, and suppose that a geodesic disc D(p,rp) is
contained in a convex k-domain in X.

THEOREM 2.1. Let M? be a 2-dimensional CBA(k)-space with an
intrinsic metric d. Then

A(D(p,7p)) 2 5(Dr(p, 7p));
where D(p,rp) is a geodesic disc centered at p of the injectivity radius

rp in M? and S(Dy(p,rp)) is the surface area of a closed disc Dy(p,p)
centered at p € My, of radius r, in the model surface Mj,.

Proof. We will define a nonexpanding mapping h from D(p,r,) onto
a ball Dg(p,mp) C My, with h(p) = P. As a consequence, we obtain the
inequality from Kolmogorov’s principle, since M}, itself is also a convex
k-domain.

Now we choose a point § € Dy(p,rp). Then there exists a unique
unit speed minimizer 7 : [0,7,] — Dg(P,r,) joining = (0) and § =
5(|pqlx)- We choose a point ¢ € D(p, rp) such that d(p, ¢) = |pqlx. Then
there exists a unit speed minimizer o : [0,7,] — D(p,7,) joining p = o(0)
and ¢ = o(d(p,q)). Since the length of the minimizer ¢ from ¢(0) to
o(rp) is equal to rp, which is the same as the length of the minimizer &
from 7(0) to &(rp), we can define a mapping k from Im(o) onto Im(7)
equilongally along Im(c) such that h(p) = D and h(q) = §. Since the
total angle H of a point p is at least 27, if we put C = %’T, then C is
less than or equal to 1. Let o® be the extension of o passing through
the point p. Then the angle Z(o,0°) at p is 7, since o is a geodesic.
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From now on, we denote z = (¢, ), if d(p,z) = £ and a = £(0,7),
where v is the minimizer passing through p and x. Since the geodesic
linking p and z is unique in D(p, rp,), the expression is unique. Similarly,
T = (4,5)s means that |pZ|y = ¢ and f = Z(,7), where ¥ is the
minimizer passing through p and z. To each z = (¢,a), € D(p,rp),
we correspond T = (¢,Ca); € Di(D,7p), where |pZ|; = £ = d(p,z) and
Ca is the angle between @ and the minimizer connecting p and Z. This
define a mapping h from D(p,rp) into a ball Dg(p,7p) by h(z) = Z.
The mapping h : D(p,rp) — Di(P,rp) is clearly onto, since for given
7 = (¢,8)5 € Di(P,rp), there is y = (¢,58)p, € D(p,rp) such that
h(y) =7

Let ¢ = (41,1)p,y = (£2,2)p € D(p,7p). Then there are geodesic
hinges (0,71, 1) and (o, v2, a2) at p € M such that v, (41) = z,v2(l2) =
y, where a; = Z(0,7;),1 = 1,2. Let (7,7%;,Ca1) and (7,75, Caz) be the
corresponding geodesic hinges in M}, such that 7, (¢1) = Z,7,(42) = .
Note that Z(v1,72) > |a2 — a1], and so we have

Z(¥1,72) = Cloz — a1 < |ag — x| £ Z(n,72) -

Hence we obtain the desired result, i.e.,

d(z,y) = [h(z) h(y)|k-
This implies that the mapping A from D(p,r,) onto Dy (P, rp) is nonex-
panding. This completes the proof. O

We will generalize Theorem 2.1 to the tube area in a 2-dimensional
singular Hadamard space. From now on, we assume that X is a 2-
dimensional singular Hadamard space with extendible geodesics, that
is, a complete simply connected 2-dimensional topological manifold with
extendible geodesics with an intrinsic metric d of nonpositive curvature
in the sense of Alexandrov. By Hadamard-Cartan theorem, singular
Hadamard spaces are strongly convex. We note that for any given
geodesics v1,7v2 : I — X in a singular Hadamard space X, the func-
tion f: I — R defined by f(t) = d(v1(t),v2(t)) is convex in . Also, it
is well-known that for a convex subset C in X, the function dg : X — R
defined by d¢(z) = d(z,C) is convex.

The following lemma generalizes the case of manifolds of nonpositive
curvature to a singular Hadamard space.

LEMMA 2.1. If f : C — R is a convex function on a (strongly) convex
subset C in a singular Hadamard space (X, d), then for any s € R, the
subset f<s defined by

f<s={peC: f(p) < s}
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is (strongly) convex in C. Moreover, any geodesic disc and any r-
neighborhood of a geodesic segment in X are always (strongly) convex
in X, respectively.

Proof. Let p,q € f<s and let 7 : [a,b] — C be the geodesic segment
from p to ¢q. By convexity of f on C,

fOy@®) = (fo)() <,

since fov(a) = f(p) < sand foy(b) = f(g) < s. So, v is in f<,. If we
choose C = {p} for p € X, then d, : X — R defined by dyp(2) = d(p, 2)
is convex. So, since d, : X — R is a convex function, a geodesic disc
D(p,s) = {z € X : dp(x) < s} is convex. By similar arguments, an
r-neighborhood T'(y,r) for a geodesic segment v in X is convex in X,
since 7y itself is a convex set in X. 0

Let C be a closed convex subset of a 2-dimensional singular Hadamard
space X. Then for each z € X there exists a unique footpoint pc(x) € C
of z on C such that d(z,pc(z)) = d(z,C).

PRroPOSITION 2.3. Let C be a closed convex subset in a 2-dimensional
singular Hadamard space X and pc(x) € C, the footpoint of x € X.
Then the metric projection pc : X — C is a 1-Lipschitz retraction,
and for the projective geodesic segment = pc(z) and a geodesic segment
pc(z)y contained in C, we have

b

N

L(pc(z)z,po(z)y) >
for any y € C.
Proof. See [3]. O

The following theorem compares the area of tube about a nontrivial
geodesic segment of given length in singular Hadamard space with the
area of tube about line segment in R? with the same length.

THEOREM 2.2. Let X be a 2-dimensional singular Hadamard space
with extendible geodesics, and let v : [0,4] — X be a nontrivial geodesic
segment of given length £ parametrized by arclength. Let % be a straight
line segment in R? with the length. Then

AT (y,r)) =2 S(To(7,7)),

where T(~,r) is an r-neighborhood of v in X and T,(%,r) is an r-
neighborhood of 4 in R2.
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Proof. We shall identify the map y with its image v([0,£]) C X. Note
that r-neighborhood T'(7, ) of -y defined as the set {z € X : d(z,7) < r}
is convex in X from Lemma 2.1. Without loss of generality, we can set
¥ ={(z,0) € R?: z € [0, 4]}, and hence the r-neighborhood T,,(%,r) of 5
in R? is the union of two half discs DL((0,0),7), Dr((£,0),r) and a rec-
tangle [0, 4] X [—r, 7] in R?, where D((0,0),r) means the intersection of
the ball D((0,0),r) and the left half plane of R2. Similarly Dg((¢,0),r)
means the intersection of the ball D((¢,0),r) and the right half plane
{(z,y) e R?: z > £} of R

Now we divide T'(y,r) by four parts Ty,Tp,Tr,Tr by using the
uniqueness of the footpoint on v of a point z € T(v,r) as follows :
Let v(0) = p and (¢) = ¢ be the endpoints of the geodesic . For each
z € T(v,r), denote the footpoint of z on ([0, £]) by p(z). Then at first
we denote the set of points having v(0) as its footpoint by 77, this is,

Ti, ={z € T(v,7) : py(z) = 7(0)}.
Similarly we put
Tr=A{z € T(y,7) : py(z) =7(O)}.

They are disjoint, and hence T'(vy, r)— (T, UTR) is the tube {z € T(v,7) :
py(z) € ¥((0,£))} of v such that its interior is homeomorphic to an open
disc in R?. Since this set is the union of two subsets which is divided by
the geodesic segment ([0,4]), we can denote, without loss of generality,
the one by Ty; and the other by Tp. Since the geodesic itself is convex,
they overlap only on the geodesic segment ([0, £]), and the intersection
Ty NTp = ([0, 4]) has measure 0.

At first, we define a nonexpanding mapping hy from Ty to the rec-
tangle RY = [0, 4] x [0,7] in R? as follows : for 2 € Ty, there exists a
unique p,(z) € ¥((0,£)). We correspond z € Ty to hy(z) € RE € R? by

hu () = (d(1(0), p4(2)) , d(z, py(2))).

We will show that hy : Ty — RY is a nonexpanding mapping: If x,y
are two points in Ty such that x p,(z) = yp,(y), then since the segment
z p,(z) joining z and p,(z) is a geodesic, there exist two geodesics y; and
72 in Ty such that z p,(x) and yp,(y) are contained in geodesics y; and
7y2 respectively. Since the metric projection py : Ty — < is contractive,
we have

d(z,y) 2 d(py(z) , py(¥)) = [hu (py(2)).hu (D7 (1))] = P2 (2) Py (W)],
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where | - | means the Euclidean standard metric in R2. For z,y € Ty
in general position, the inequality holds, since the function f defined by

f(t) = d(y(t), 12(t)) is convex in ¢.

Hence, by the Kolmogorov’s principle(Proposition 2.2), we obtain
that

A(Ty) > S(RY).
By the same argument as above, hy : Ty — RY defined by

hy (z) = (d(p, py(2)), d(z, py()))

for z € Ty, is nonexpanding, and so the area of surface of Ty is more
than or equal to the Lebesgue measure of RS. Now we claim that

the total angle of the direction space DpTy of p €Ty

is not less than .

Since the geodesic segment ([0, ¢]) is a closed convex subset in X, the
angle between the geodesic segments = pc(x) and ([0, £]) is not less than
Z for any z € Ty UTp by Proposition 2.3. For sufficiently small € > 0,
consider the extended geodesic 7 : [—¢,f] — X passing through v(0) of
the geodesic 7 : [0,4] — X. Then there exist two geodesic segments 21p
and zop in Ty, with length r such that v(0) = p5(21) = p5(22), for some
21,20 € 8T (y,7) N Tr. Since the geodesic segments z1p and z9p make
the angle a > 7 with the extended geodesic ¥, the angle Z(z1p, zap)
between z1p and z9p in T7, is greater than or equal to 7. Hence we prove
the claim.

Theorem 2.1 with the claim implies A(T) > 1S(D((0,0),r)). By the
same argument, we obtain that A(Tg) > 3S(D((0,0),7)). Therefore,
area of surface of the r-neighborhood T'(vy, r) of -y is greater than or equal
to Lebesgue measure of the racetrack T, (fy, ) in R2 This completes the
proof of Theorem 2.2. 0

The systole of a CBA(k)-space X, denoted by sys(X) is, by definition,
the infimum of lengths of closed curves in X which are not homotopic
to zero. Related with sys(X) to the area of a space X, there are several
well-known inequalities ([4], [5], [7], [9]). Now, as an application of
Theorem 2.2, we obtain the following inequality.

THEOREM 2.3. Let X be a 2-dimensional nonsimply connected geode-
sically complete metric space of nonpositive curvature. Suppose that
is a shortest closed geodesic in X with the property that the %K('y)—
neighborhood N., C X of 7y is homeomorphic to a cylinder, where £(7y)
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denotes the length of v. Then we have
A(X) > sys?(X).

Proof. It is obvious that, for any point p € -, the open metric ball
B(p, £()/2) does not contain y. We claim that

any point q € B(p,£(7)/2) is joined to p by the unique minimizer.

Suppose that two points p and ¢ are joined by two minimizers ; and
oo in B(p, £(7)/2). Since a minimizer is a convex subset of X, any point
a in o has the unique footpoint p,,(a) in o3. If py,(a) is either p or
q for all @ € o1, then the concatenation o1 » oy 1 is a closed geodesic
with length less than £(v). This is contrary to the assumption. On the
other hand, if ps,(a) is neither p nor ¢ for some a € o1, then the angle
Z(aps,(a),pps,(a)) between two geodesics ap,,(a) and ppy,(a) is not
less than 7/2 by Proposition 2.3. Also, we have Z(apy,(a),¢ps,(a)) >
7/2. This implies that either the triangle Apaps,(a) or the triangle
A qapg,(a) has an interior angle more than 7, which is a contradiction.
Hence, we prove the claim.

The claim implies that B(p, £(y)/2) is contractible. Hence, by Hada-
mard-Cartan theorem, the ball B(p,¢(+)/2) does not contain any closed
geodesic, and any two points in B(p,#(y)/2) is joined by the unique
minimizer. This implies that the injectivity radius of X is half of £(vy).
Consider the half segments v+ = {g € v : y(0) < ¢ < 'y(f—(;—))} and

7 ={g € v v("P) < g <) = ¥(0)} of v. Then §(y)-
neighborhood N, C X of v is the union of the following four subsets

T, ={z € Ny:py(z) = v}, T_={x e Ny :py(z) =77},

To={z € Ny ipy(a) =10}, Tup = {r € Ny (o) = 7“0},

Note that they are pairwisely disjoint, from the assumption that N, is
homeomorphic to a cylinder. Using the same argument as in the Theo-
rem 2.2, the areas of T, and T_ are not less than %Kz (y), respectively.
Therefore,

A(Ny) = 'A(N'y—) + A(N'y+) 2 62(7) = sysz(X),

and we obtain the desired result. O
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3. A lower bound of a tube in 2-dimensional singular
Hadamard spaces

As an application of Theorem 2.2, we obtain a generalized Steiner’s
formula in 2-dimensional singular Hadamard space with extendible geo-
desics. Consider a triangle T = AABC in X with geodesic sides
AB,BC,CA, and denote the exterior r-neighborhood of T" by N£(T).
And let £ be the geodesic emanating from the vertex A such that the
footpoint pr(z) of each point x € € is A, and for any point z in the re-
gion in N£(T) bounded by the geodesic segments AB and &, pr(z) # A.
Similarly, let ¢ be the geodesic emanating from A such that the foot-
point pr(z) of each point z € { is A, and for any point y in the region in
NE(T) bounded by the geodesic segments ¢ and AC, pr(y) # A. We call
the angle Z(&,() the outer angle at the vertex A, which is the exactly
same as the exterior angle in Euclidean plane.

LEMMA 3.1. With &,({, AB and AC as above, we have

£(€,AB) = g and £(C, AC) = g

Proof. Since ¢ is a projective geodesic, Z(§, AB) > 5 by Proposition
2.3. Suppose £(§,AB) > 5. Then by Proposition 2.1 there exists a
geodesic p between AB and ¢ such that Z(p, AB) = 7, and py(w) # A
for any w € p from assumption. Let ¢ = p,(w) € AB. Then the interior
angle of the triangle A = (w, ¢, A) is more than 7. By comparing triangle
A = (w,q, A) to its comparison triangle in R?, we get a contradiction.
Hence we have Z(£,AB) = 7. By the same argument, Z(¢, AC) =
iy

T O

THEOREM 3.1. Consider a triangle T = AABC with geodesic sides
AB, BC and CA in a 2-dimensional singular Hadamard space X. Then,
area of surface of the exterior r-neighborhood of T' is more than or equal
to Lebesgue measure of the corresponding exterior r-neighborhood of a
comparison triangle T9 in R? with the same side lengths.

Proof. We devide the exterior r-neighborhood NZ(T') of the triangle
T = AABC in X by using the foot point of each point in N¢(T") by pair-
wise disjoint six regions Dap, Dpc, Dca, D4, D, Dc, where Dj means
the set {z : pr(z) € I}. Denote their corresponding set in R? by DY.
Using the same argument as in the Theorem 2.2, we have

A(Dr) = S(DY),
for geodesic segments [ = AB, BC,C A of the triangle T.
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On the other hand, to compare another parts we denote the interior
angles of the vertices A, B and C by a,b and ¢, respectively. Also we
denote the outer angles of the vertices A, B and C by f, g and h, respec-
tively. Thena+b+c<m,anda+ f+b+g+c+ h > 37 by Lemma
3.1. Hence we have f + ¢g + h > 2w. Therefore, we have

AD4UDgUDc) > S(DYuDEUDY),
since the total angle of a triangle in R? is 2. |

From the same argument as given in the proof of the previous the-
orem, we obtain the following general result for convex polygons in a
2-dimensional singular Hadamard space.

COROLLARY 3.1. For any convex n-gon G, in a 2-dimensional singu-
lar Hadamard space X, area of surface of the exterior r-neighborhood
of Gy, is not less than Lebesgue measure of the corresponding exterior
r-neighborhood of a comparison n-gon G9 in R? with the same side
lengths as the convex n-gon G,.

Proof. Since the sum of all interior angles at vertices of an n-gon G,
in X is less than (n — 2)7, the sum of all outer angles at vertices is more
than 27 by Lemma 3.1. Hence, we obtain the consequence by the same
argument in the proof of Theorem 3.1. 0

THEOREM 3.2. Let I' be a convex rectifiable closed curve in a 2-
dimensional singular Hadamard space X. Then area of surface of the
exterior r-neighborhood of T is greater than or equal to Lebesgue mea-
sure of the exterior r-neighborhood of a circle in R? with the same
perimeter as the length of T'.

Proof. Choose three points A, B,C on I' such that the lengths of
arcs ABr, BCr, ACr along the curve I is equal to e_(gr_)‘ Then we make
a triangle T = AABC by connecting the points A, B,C by geodesic
segments contained in I'. Now we construct a sequence of polygons
which are contained in I' as follows: For arcs ABr, BCr, ACr, we pick

points D, E, F, as like D € ABr,E € BCr, F € ACF, such that
1 1
r(ADr) = ¢r(DBr) = §EF(ABF) = EE(F).

Then we connect A and B with D, respectively, by shortest geodesics.
By doing this procedure for arcs BCT, ACT, we obtain a hexagon P; =
ADBECF containing the triangle T' = AABC which is contained in
I'. Now we repeat the same process as above for six subarcs ADrp, DBr,
BEyY, ECy,CFr, FAr. Then we obtain a 12-gon P, which is contained
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in I, and containing the hexagon ADBECF'. Also, each subarc has the
same arclength 35¢(T).

By continuing this procedure, we obtain a sequence of polygons
{Pp};2, inscribed in T' that gradually approach to I', and we denote
P, — I'. Note that P, is a 3-2"-gon, and if P,, — T, then the sequential
limit of area of surfaces of the convex bodies bounded by the convex
polygons P, is equal to area of surface of the region bounded by T', and
nh_)néo Length(P,) = Length(T"). For each convex polygon P inscribed in
I', we correspond the circle Cp with perimeter £(P) in R2.

By the construction given above, we have a sequence of convex poly-

gons {P,} with 3 - 2" edges that are inscribed in I' such that £(P,) <
#(Py41) and P, — I'. Since P, — T', we have

lim A(NE(Po)) = A(NE(T)).
Since A(NE(P,,)) = S(NE(Cp,)) by Corollary 3.1, we obtain
A(N;(I) = S(N:(Cr))
where Cr is the circle of perimeter ¢(T'). O
COROLLARY 3.2. The relative area growth of balls in a 2-dimensional

singular Hadamard space X with respect to a fixed disc D is faster than
that in Euclidean plane RZ.

Proof. Consider a geodesic disc D which is bounded by a boundary
curve OD of circumference L, and a disc D? with radius R in a Eu-
clidean plane of length AD° = L. Then by the isoperimetric inequality
in CBA(k)-space([2]), A(D) < S(D°). Also by the generalized Steiner’s
tube formula above, A(NE(8D)) > S(N&(OD®)). This implies that

A(NF(9D)) _ S(N;(8D%)
AD)y  — S
Let B be the geodesic ball B = DUNE(8D), and let B® be the ball B =

D% U Ng(0D) with radius R + r. Then A(B) = A(D) + A(N£(OD)).
Hence

A(B) A(D) + AN (8D))

A(D) ~ A(D)
|, SINE(@D®) _ S(BY)
= ST TR0y T sy
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