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A TOPOLOGICAL MIRROR SYMMETRY ON
NONCOMMUTATIVE COMPLEX TWO-TORI

EunsanGg KM aAND Hoin Kim*

ABSTRACT. In this paper, we study a topological mirror symme-
try on noncommutative complex tori. We show that deformation
quantization of an elliptic curve is mirror symmetric to an irrational
rotation algebra. From this, we conclude that a mirror reflection of
a noncommutative complex torus is an elliptic curve equipped with
a Kronecker foliation.

1. Introduction

The noncommutative tori is known to be the most accessible exam-
ples of noncommutative geometry developed by A. Connes [3]. It also
provides the best examples in applications of noncommutative geome-
try to the physics of open strings [20, 5]. A noncommutative torus is
a universal C*-algebra generated by two unitary operators subject only
to a suitable commutation relation. It arises naturally in a number of
different situations. Among others, it can be obtained as a deforma-
tion quantization of the algebra of continuous (smooth) functions on an
ordinary torus. This approach has been used widely in gauge theories
on noncommutative tori (¢f. [17]) and in applications to string theory
such as in [9]. On the other hand, one can consider a noncommutative
torus as a foliation C*-algebra for a Kronecker foliation on a torus via
Morita equivalence, [3]. Such an algebra is known to be an irrational
rotation algebra, [16]. Here we will choose these two approach to define
noncommutative two-tori and we will discuss how they are related with
the mirror symmetry [21, 22].

Associated to a topological mirror symmetry, we need to define a
complex structure on a noncommutative torus. The complex geometry
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has been developed by A. Schwarz in [19] and some basic calculations
have been made in [7] for the two-dimensional case which leads to the
study of Kontsevich’s homological mirror symmetry ([13]) in [15], [11]
and [14] (see also [12]).

In this paper, we will mainly concern on an aspect of a topological
mirror symmetry on elliptic curves based on [22] which compares the
moduli spaces of stable bundles and supercycles. The stable bundles of
a certain topological type are deformed to standard holomorphic bundles
on a noncommutative complex torus, along the deformation quantization
procedure. We show that the deformation is equivalent to define a linear
foliation on a mirror reflection of a given elliptic curve.

In Section 2, we will review some basic facts for noncommutative
complex tori. In Section 3, we show how stable bundles on an elliptic
curve are deformed to standard holomorphic bundles on a noncommu-
tative complex torus. In Section 4, we find a mirror reflection of a
noncommutative complex torus.

2. Some preliminaries on noncommutative complex tori

In this section, we review some basic facts for noncommutative com-
plex tori and bundles on them, following [19] and [15].

2.1. Noncommutative complex two-tori

A noncommutative two-torus T02 is defined by two unitaries Uy, Us
obeying the relation

(l) U1U2 = exp(2m’9)U2U1,

where § € R/Z. The commutation relation (1) defines the presentation
of the involutive algebra

Ap =1 Z anl,mU{LlU;’z | Onq,ne € 8(22)}a

ny,ny €72

where S(Z?) is the Schwartz space of sequences with rapid decay at
infinity. According to [4], the algebra Ay can be understood as the
algebra of smooth functions on TOZ. As was given in [18], the algebra Ag
can be defined as a deformation quantization of C°°(7?), the algebra
of smooth functions on the ordinary torus 72. The action of T2 by
translation on C°(T?) gives an action of T2 on Ag. The infinitesimal
form of the action defines a Lie algebra homomorphism ¢ : L — Der(Ay),
where L = R? is an abelian Lie algebra and Der(Ag) is the Lie algebra
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of derivations of Ag. Generators &1, d2 of Der(A4g) act in the following
way:

(2) o Z Uny n, UMU™ | = 27 Z Ny m, UL U™,

(n1,n2)€Z2 (n1,n2)€7Z?

A complex structure on T02 is defined in terms of a complex structure
on the Lie algebra L = R? which acts on Ag. Let us fix a 7 € C such that
Im(7) # 0 and then 7 defines a one-dimensional subalgebra of Der(Ayp)
spanned by the derivation §, given by

(3) Sl D anym,UMU™
(n1,n2)€Z2
= 2mi Z (ni + n2)an, n, UM U™
(n1,n2)€Z?

The noncommutative torus equipped with such a complex structure is
denoted by T(,2 , and will be called a noncommutative complex torus.

2.2. Holomorphic bundles on Tg’ -

Since the algebra Ay is considered as the algebra of smooth func-
tions on Tg, the vector bundles on T92 correspond to finitely generated
projective right Ag-modules. Such modules can be constructed by the
Heisenberg projective representations and it is known (see [17]) that for
each g = (‘g 3) € SLo(Z) such that d + cf # 0, a Heisenberg module
E4(0) := E4.(0) over Ag is given by the Schwarz space S(R x Z/cZ)
equipped with the right action of Ag:

fUl(‘S’k) :f(s_

FUa(s5,K) = expls = )1 (s, ),

where s € R and k € Z/cZ. For g € SLa(Z), the modules Ey(#) will be
referred as basic modules.

Connections on a vector bundle on the noncommutative torus Tg are
defined in terms of derivations. Let E be a projective right Ag-module,
a connection V on E is a linear map from E to £ ® L* such that for all
z €L,

d+c0’k_1)
C

Va(€u) = (Vob)u + &62(u), £ € E,uc Ay



954 Eunsang Kim and Hoil Kim

The curvature Fy of the connection V is a 2-form on L with values in
the algebra of endomorphisms of E. That is, for z,y € L,

Fy(z,y) := [vay] - v[ac,y]'

Since L is abelian, we simply have Fy(z,y) = [V, Vy].
A holomorphic structure on a right Ag-module E' compatible with the
complex structure on TQZJ is a C-linear map V : E — F such that

V(€ -uw)=V() u+& -6 (u), £€Euc .

A projective right Ag-module equipped with a holomorphic structure
is called a holomorphic bundle over the noncommutative complex torus
TZ . In particular, the basic modules F,4(6) equipped with holomorphic

structure are called standard holomorphic bundles on TQQ’T.

2.3. The Chern character and the slope of basic modules

The K-theory group Kg(Ag) classifies the finitely generated projec-
tive Ag-modules and there is a natural map, the Chern character which
takes the values in the Grassmann algebra A®*L*, where L* is the dual
vector space of the Lie algebra L. Since there is a lattice I' in L, there
should be elements of A*T™* which are integral, where I'* is the dual
lattice of I'. The Chern character is the map Ch : Kq(Ag) — A®V(L*)
defined by

(4) Ch(€) = e (&),

where i(6) denotes the contraction with the deformation parameter 6
regarded as an element of A2L and v(£) € A°¥"T*. See [17] for details
for the definition of the Chern character. For a given g = (2 %) € SLy(Z)
such that d + ¢f > 0, we have

(5) Ch(E4(0)) = (d + cf) + ¢ dz1 A dzo.
Let us define
deg(g) = deg(Ey4(f)) =c¢ and r1k(g,60) = cf + d = rank(E,(0)).

As in the classical case, we may define the slope of the basic module
E,(6) by the numbers

)y = deslo) _ ¢
rk(g,0) cB+d

p(Eq(0
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3. Stable bundles on an elliptic curve and standard holo-
morphic bundles

In this section we construct a standard holomorphic bundle over T(iT
from a stable bundle over an elliptic curve X,;. We will show that the
moduli space of holomorphic stable bundles is naturally identified with
the moduli space of standard holomorphic bundles associated to a matrix
in SLy(Z) which determines a topological type on both bundles.

3.1. Stable bundles on an elliptic curve

Let X, = C/Z + 7Z be an elliptic curve whose complex structure is
specified by 7 € C, Im 7 # 0. For X, the algebraic cohomology ring is
A(X,)=HX;,2)® H*(X,,Z) =2 7. & Z.

The Chern character of a holomorphic vector bundle F on X, takes the
value in A(X;):
Ch(E) = (rank E,deg E) € H*(X,,Z) ® H*(X,,Z),
where deg E = ¢;(E). The slope of a vector bundle E is defined by
deg E
E)= .
HE) rank E

A bundle F is said to be stable if, for every proper subbundle E’ of E,
0 < rank E’ < rank E, we have

WE') < p(E).
Every stable bundles carries a projectively flat Hermitian connection

VE. In other words, there is a complex 2-form X on X, such that the
curvature of V¥ is

Ryr =\ -1dg,
where Idg is the identity endomorphism of E. Since

c1(E) = 2—7'7;'[? Ryr = 2—27;)\~ rank E,

we have 5 (E) 0
T C T
A= ———— = —u(Fk).
1 rank E ') HE)
Thus
(6) RvE = —27riu(E)IdE.

Note that if F is stable, then the topological type of F is given by the
pair (rank F,deg E) which is relatively prime. Thus we may extend
the pair to a matrix in SLa(Z). For g = (%Y%) € SLy(Z), let us denote
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by Mj the moduli space of holomorphic stable bundles of rank d and
degree ¢ on X.. Since every stable bundle FE on an elliptic curve X is
uniquely determined up to translation by its topological type (d, c), the
moduli space is

M= X,

3.2. Holomorphic deformations of stable bundles

For a matrix ¢ = (2%) € SLy(Z), the Chern character of a stable

bundle E in My is of the form Ch(E) = (d,c) € A(X;) and it defines
an integral element d + cdz'? € A2L*. Let us consider

e—H0) (d+ cdz'?) = (d+ c8) + ¢ dzy A dao
and let

Then we have

ProrosiTiON 3.2.1. For a stable bundle E on X, whose topological
type is specified by a matrix g = (‘; 3) € SL2(Z), there is a basic Agy-
module E4(6) equipped with a connection whose curvature is —2mip.

Proof. Associated to the curvature condition (6) on the stable bundle
E on X;, we define a Heisenberg commutation relation by

(7 Fyg = [V1, V2] = —2mip.

By the Stone-von Neuman theorem, the above relation has a unique
representation. As discussed in [6], the representation is just c-copies of
the Schrodinger representation of the Heisenberg Lie group R3 on L2(R),
where the product on R? is given by

(r,5,8) - (', s ) = (r+r,s+ 5, t+ 1 +s1').

Then the operators Vi and Vg are the infinitesimal form of the repre-
sentation and is given by

© (V1) (s, ) = 2ripss (s, ),
) (V21)(5,K) = L (s, 1)

acting on the Schwartz space S(R x Z/cZ) = S(R) ® C°. Let E4(6) =
S(R)®C*c. Then one sees that (8) and (9) are in fact desired connection
on Eg(8). To specify the module E4(§), we need to define a module
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action which is compatible with the relation (1) for T2. Let us first
consider unitary operators Wi, Wy on S(Z/cZ) = C¢ defined by

Wif(k) = f(k - d),

Waf (k) = e~2< (k).
Then ,

W1W2 = eZTM:ZWQWl.
In other words, W1 and W5 provide a representation of the Heisenberg
commutation relations for the finite group Z/cZ. Associated to the
connections (8) and (9), we have Heisenberg representations Vi and V3
on the space S(R) as

Vif(s) = 20 £(s),
Vaf(s) = f(s+1).
The operators obey the relation
ViV = e—zm'(g—e)vzvl.
Finally, the operators
(10) Uy =VieW; and Uz =Vo®@ Wy
acting on the space S(R x Z/cZ) satisfy the relation
U1Us = 205U

This completes the construction of basic module E4(f) equipped with a
constant curvature connection Vi, Vg such that the curvature is given
by (7). O

The basic module E,(#) constructed in Proposition 3.1 admits a con-
stant curvature connection (8, 9) and all other constant curvature con-
nections on E,(#) which satisfies the relation (7) are given as

() (V1£)(s) = 2mip(Ey(6))(s) + 2ric,
(12) (V21)(s) = 2L+ 2m,

where a and 3 are real numbers. Let us fix a complex number 7 such
that Im 7 < 0. The parameter 7 defines a complex structure on T02 via
derivation d; = 761 + 3 spanning Der(Ap) as given in subsection 2.1.
Then a holomorphic structure on Ey(6) is specified by V =1V + Va.
Along with the connections in (11, 12), and for z € C, let

(V)05 k) = 95, k) + 2miCri( By (6))s + 2) /(5. )
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Then V, defines a standard holomorphic structure on Eg4(6). Other
holomorphic structures are determined by translations of & and 8 in (11)
and (12). In other words, all the holomorphic structures are determined
by the complex number z = 7a + . A basic module E,4(8) equipped
with a holomorphic structure V, is called a standard holomorphic bundle
and is denoted by E7(6). Let Mg (6) be the moduli space of holomorphic
constant curvature connections on E4(§) which satisfy the relation (7).
Then our discussion above shows that the following:

PRroOPOSITION 3.2.2. With notations above, we have
Mg(0) = X, =2 Mg,

4. Mirror symmetry and noncommutative tori

In this section, we consider a mirror torus X’T of the elliptic curve X.
We first review the construction of X, following the lines of [22]. Then
we will show that a Kronecker foliation on )?T is mirror symmetric to a
noncommutative complex torus.

4.1. Supercycles

Let 7 € C be an element in the lower half-plane as in Subsection
3.2. The complex number defines an elliptic curve X, = C*/¢%, ¢ =
exp(—2mit). A complex orientation of an elliptic curve X, is given
by a holomorphic 1-form €2, which determines a Calabi-Yau manifold
structure on X.. A special Lagrangian cycle of X, is a 1-dimensional
Lagrangian submanifold £ such that the restriction of {2 satisfies

Im Q=0 and Re Q| = Vol(L),

where the volume form is determined by the Euclidean metric on X,.
A special Lagrangian cycle is just a closed geodesic and hence it is rep-
resented by a line with rational slope on the universal covering space of
X, . Let us fix a smooth decomposition

X, =81 x 8t
which induces a decomposition of cohomology group
HY X, Z) =27, ®T_.
Let [B] € Z_ and [F] € Z4 be generators of the cohomology group
such that the cycles representing [B] and [F| have no self-intersection

and two cycles have one intersection point. Then the cohomology class
[F) € HY(X,,Z) is represented by a smooth cycle in X, and is a special
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Lagrangian cycle. The family of special Lagrangian cycles representing
the class [F'] gives a smooth fibration

(13) m: X, — S :=B

and the base space B = S! is just the moduli space of special La-
grangian cycles associated to [F| € H}(X;,Z). The unitary flat con-
nections on the trivial line bundle Si xC — S}r are parameterized by
S':= Hom(m(S}),U(1)), up to gauge equivalences. Thus we have the
dual fibration

(14) 7:X, —B=§"

with fibers .
771(b) = Hom(m (7~1(b)), U(1)) = S1.

The dual fibration admits the section sq € )/(:T with
so N7 (b)) = 1 € Hom(m (771(b)), U(1)),
so that we have a decomposition
)A(T =Sl % St

Hence, associated to the class [F] € H'(X,,Z), the space X, is the
moduli space of special Lagrangian cycles endowed with unitary flat
line bundles. Furthermore, )?T admits a Calabi-Yau manifold structure.
In other words, )?T is the mirror reflection of X; in the sense of [21].
Under the Kéahler-Hodge mirror map (see [22]), a complexfied Kéahler
parameter p = b + ik defines a complex structure on )?T, where k is a
Kihler form on X, and b defines a class in H2(X,,R)/H?(X,,Z). Then
X, is the elliptic curve C*/e2™Z_ Similarly, the modular parameter 7 of
X, =C*/q%, q= exp(—zwiT), Im 7 < 0, corresponds to a complexfied

Kahler parameter p on X,.

4.2. The moduli space of supercycles

DEFINITION 4.2.1. A supercycle or a brane on )?T is given by a pair
(L, A), where L is a special Lagrangian submanifold of X, and A a flat
connection on the trivial line bundle £ x C — L.

A special Lagrangian cycle in X, > R? /Z & Z is represented by a line
of rational slope, so can be given by a pair of relatively prime integers and
we extend the pairs to a matrix in SL2(Z). The lines of a fixed rational
slope are parameterized by the points of interception with the line y = 0
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on the universal covering space R? of X,. For g = (28) € SLy(Z), let
L4 be a special Lagrangian submanifold of X given by

(15) Ly ={(ds+ a,cs)| s € R/Z},

so that the line has slope § and z-intercept a. The shift of £, is rep-
resented by the translation of «. Thus the moduli space of special La-
grangian cycles are S'. Note that a unitary flat line bundle on Ly is
specified by the monodromy around the circle. On the trivial line bun-
dle £, x C — L, we have a constant real valued connection one-form

on R?, restricted to Ly, given by
(16) A =2mifdz, z€R? BeR/Z,

so that the monodromy between points (z1,31) and (z2,y2) is given
by exp[2mif(z2 — x1)]. Thus, the shift of connections is represented
by monodromies. Combining the result in Subsection 3.1, we have the
following:

PROPOSITION 4.2.2. Let SMy be the moduli space of supercycles

on )?T, whose special Lagrangian cycle is specified by the matrix g €
SL2(Z). Then we have

SMy = X, = M3,

REMARK 4.2.3. In [22], the identification SM, = M} was shown in
a geometric way. By Proposition 3.2.2, we also have

(17) SMg = MS 22 M3(6).

However in the above identification, one may not see how deformation
quantization is related to a mirror symmetry. In below, we shall reprove
the identification (17) in a geometric way.

4.3. A mirror reflection of Tj;

There are many ways to define a noncommutative torus such as a de-
formation quantization or as an irrational rotation algebra, etc. In Sec-
tion 2, we have considered Ay as a deformation quantization of C°°(T?).
An irrational rotation algebra can be obtained from a Kronecker folia-
tion on a torus. We show that those two algebras are related by a mirror
symmetry.

THEOREM 4.3.1 For an irrational number 8, the noncommutative
torus Ay obtained from a deformation quantization of C°°(T?) is mir-
ror symmetric to an irrational rotation algebra which is defined by the
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Kronecker foliation on )/(\'T whose leaves are represented by the lines of
slope 8~ on the universal covering space of X.

Proof. Let us consider the case when g = (). It corresponds

to trivial line bundles on X,;. The sections of a trivial line bundle is
identified with C*°(X,) and it is deformed to a free module over Ag
of rank 1 along the proof of Proposition 3.2.1. Thus we have Ay as
a deformation quantization of C°°(X;) with a holomorphic structure
specified by the derivations on it.

On the mirror side, let )/(\'7,9_1 be a foliated torus defined by the dif-
ferential equation dy = 0~ 'dz with natural coordinate (x,y) on the flat
torus determined by the symplectic form on )?T. Such a foliation is
called a Kronecker foliation or a linear foliation (c¢f. [2]). On the cov-
ering space of )/(:T the leaves of the foliation are represented by straight
lines with fixed slope =1 and every closed geodesic of X, yields a com-
pact transversal which meets every leaves. For g = (§9), a trivial line
bundle is mapped to a special Lagrangian cycle represented by the line
y = 0 under the identification My = SM,. The line y = 0 is a com-
pact transversal for the #~1-linear foliation and each leaf meets the line
countably many points. Associated to the intersection points, each leaf
defines the rotation through the angle 8 on the circle S*, which gives a
Z-action on S'. The action defines the crossed product of C*(S') by
Z which is called the irrational rotation algebra (see [16], [1]). Thus a
trivial line bundle on X, naturally defines the rotation algebra through
#. This completes the proof. ' O

The rotation algebra considered in the proof of Theorem 4.3.1 is
Morita equivalent to the foliation C*-algebra for X, g—1 (see [3] for de-
tails). Thus we may conclude the following;:

COROLLARY 4.3.2. The foliation C*-algebra for the 0~ !-linear foli-
ation is a mirror reflection of the algebra of functions on T?_. Equiv-

alently, the foliated, complex torus )?7,9_1 is a mirror reflection of the
noncommutative torus Tg’ .

On the other hand, for any g € SLy(Z), the leaves of the §~1-linear
foliation rotate the special Lagrangian cycle £y in a different angle ¢’
from 6. Thus the leaf action on £, defines another noncommutative torus
Ay and two irrational rotation algebras are related by a strongly Morita
equivalence (see [3]), in other words, Ay = End 4,(E,(0)). Furthermore,
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two deformation parameters 6 and 6’ are in the same orbit of SLy(Z)-
action; §' = g6 = gg;_‘l'_'g. Thus we can extend Corollary 4.3.2. to a more
general foliated manifolds:

COROLLARY 4.3.3. The foliated, complex torus )?T,g/ is a mirror
reflection of the noncommutative torus TGQ’T, where ' = g0 for g €

SLy(Z).

REMARK 4.3.4. It was suggested in [8] that the relation of C*-algebra
of foliation and a C*-algebra obtained from a deformation quantization
of a torus can be regarded as a mirror symmetry. From a physical point
of view, it was argued in [11] that those two C*-algebras are related by
the T-duality, which is equivalent to the mirror symmetry on tori. Thus,
our results, Theorem 4.3.1. and its Corollaries, may be considered as a
mathematical interpretation of [11].

Finally, we show that a standard holomorphic bundle E%(6) on T(i ;i

obtained geometrically, using the §~!-linear foliation structure of X ro-1-
Our argument here is essentially based on [3]. For a matrix g = (29) €
SL2(Z), the finitely generated projective Ag-module Ey(f) = S(R) ® C°
gives a strong Morita equivalence between Ay and Ag. As we have
shown above, the noncommutative tori Ag and Agp correspond to special
Lagrangian cycles L1, I = (}9), and £, respectively. Since the cycle £
is represented by the line y = 0 on X, = R2/Z2, the leaves of §~!-linear
foliation on )?T are the lines given by

{(6t + z,t) | t € R}.
On the other hand, the special Lagrangian cycle £, is the line

Ly= {(%H—a,t) |a e R/Z, t € R}.

Then the space of leaves starting at L£; and ending at Lg is determined
by the equation

(18) %lt+a———0t+:c, or (g—ﬁ)t=w—a mod 1.

Let & = {((z,0),t) € X, xR | (¢ -0t =2—a modl}. Since
the line £y cuts the line £; c-times, one finds that the manifold &, is
the disjoint union of c-copies of R, i.e., & = R x (Z/cZ). Then the
algebra of compactly supported smooth functions on &; is C(&,;) =
SR xZ/cZ) = S(R) @ C°. Let W1 and W5 be unitary operators on C¢
such that W{ = W§ =1 and W W, = exp(27rid)W2W1. These operators

c
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reflect the structure of a stable bundle on X, (c¢f. [10]). Associated to
the equation (18), we define operators V; and V, on S(R) by

(19) (K)(t) = expl(2na) exp(2mi( L — 6)0)f(2),

(20) (Vaf)(t) = F(E+1).

Then U; = V;QW;, (i = 1,2), gives a left module action on C$°(&,). The
module action (19, 20) also determine a constant curvature connection
V1, Vs, by the formula given in (11, 12), where the translation of V,
is determined by the monodromy data or a complex phase exp(2mif),
B € R/Z, given in (16). Thus we see that the special Lagrangian cy-
cle £, determines a basic module Ey(f) = C°(&;) equipped with a
constant curvature connection. The monodromy data specified in (12)
determines the holomorphic structure on Ey4(0) by V = 7V + V3. This
completes the geometric construction of E7 (), where z = Ta+ 3. From
this construction we get the following, which can be interpreted as a
noncommutative version of Proposition 4.2.2.

PROPOSITION 4.3.5. For a matrix g € SLy(Z), let SMgy(8) be the

moduli space of compact transversals for 0 -linear foliation on X, to-
gether with the monodromy around the circles (compact transversals)
which is given by a complex phase exp(2mif3), § € R/Z. Then we have

SMg(8) = M2(6).

REMARK 4.3.6. The moduli space SM,(6) given in Proposition 4.3.5
is essentially the same as the moduli space of supercycles SM, given
in Proposition 4.2.2. Thus Proposition 4.3.5 can be seen as a geometric
construction of the identification of (17) stated in Remark 4.2.3.
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