References
- Barry, D. and Hartigan, J.A. (1993). A Bayesian Analysis for Change Point Problems. Journal of the American Statistical Association, Vol. 88, 309 -319 https://doi.org/10.2307/2290726
- Brown, P.J. and Vannucci, M. (1998). Multivariate Bayesian Variable Selection and Prediction. Journal of Royal. Statistics Society B, Vol. 60, 627-641 https://doi.org/10.1111/1467-9868.00144
- Chernoff, H. and Zacks, S. (1964). Estimating the Current Mean of a Normal Distribution which is subject to Changes in Time. Annals of Mathematical Statistics, Vol. 35, 999-1018 https://doi.org/10.1214/aoms/1177700517
- Chen, J. and Gupta, A.K. (2000). Parametric Statistical Change Point Analysis, Birkhauser. New York
- George, E.I. and McCulloch, R.E. (1993). Variable Selection via Gibbs Sampling. Journal of the American Statistical Association, Vol. 88, 881-889 https://doi.org/10.2307/2290777
- Geyer, C.J. (1991). Markov chain Monte Carlo Maximum Likelihood. In Com -puting Science and Statistics: Proceedings of the 23rd Symposium on the Interface (Edited by E.M. Keramigas), 156-163. Interface Foundations. Fairfax
- Green, P.J. (1995). Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination. Biometrika, Vol. 82, 711-732 https://doi.org/10.1093/biomet/82.4.711
- Holland, J.H. (1975). Adaptation In Natural and Artificial Systems. University of Michigan Press, Ann Arbor
- Hukushima, K. and Nemoto, K. (1996). Exchange Monte Carlo Method and Application to Spin Glass Simulations. Journal. Physics. Society. in Japan. Vol. 65, 1604-1608 https://doi.org/10.1143/JPSJ.65.1604
- Liang, F. and Wong, W.H. (1999). Real Parameter Evolutionary Monte Carlo with Applications in Bayesian Neural Networks. Technical Report, Department of Statistics and Applied Probability, NUS
- Liang, F. and Wong, W.H. (2000) Evolutionary Monte Carlo Applications to Cp Model Sampling and Change Point Problem. Statistica Sinica, Vol. 10, 317-342
- Liang, F. and Liu, C. (2005). Efficient MCMC Estimation of Discrete Distri -butions. Computational Statistics & Data Analysis, Vol. 49, 1039-1052 https://doi.org/10.1016/j.csda.2004.07.022
- Marinari, E. and Parisi, G. (1992). Simulated Tempering: a New Monte Carlo Scheme. Europhyics. Letters, Vol. 19, 451-458 https://doi.org/10.1209/0295-5075/19/6/002
- Spears, W.M. (1992). Crossover or mutation? In Foundations of Genetic Algorithms 2 (Edited by L. D. Whitley). Morgan Kaufmann, San Mateo
- Tierney, L. (1994). Markov Chains for Exploring Posterior Distributions (with discussion). Annals of Statistics, Vol. 22, 1701-1762 https://doi.org/10.1214/aos/1176325750
- Yao, Y.C. (1984). Estimation of a Noisy Discrete-time Step Function: Bayes and Empirical Bayes Approaches. Annals of Statistics, Vol. 12, 1434-144 https://doi.org/10.1214/aos/1176346802