DOI QR코드

DOI QR Code

Test for the Exponential Distribution Based on Multiply Type-II Censored Samples

  • Published : 2006.12.31

Abstract

In this paper, we develope three modified empirical distribution function type tests, the modified Cramer-von Mises test, the modified Anderson-Darling test, and the modified Kolmogorov-Smirnov test for the two-parameter exponential distribution with unknown parameters based on multiply Type-II censored samples. For each test, Monte Carlo techniques are used to generate the critical values. The powers of these tests are also investigated under several alternative distributions.

Keywords

References

  1. Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring. IEEE Transactions on Reliability, Vol. 38, 355-357 https://doi.org/10.1109/24.44181
  2. Balasubramanian, K. and Balakrishnan, N. (1992). Estimation for one-parameter and two-parameter exponential distributions under multiple Type-Il censoring. Statistische Hefte, Vol. 33, 203-216
  3. Kang, S. B. (2003). Approximate MLEs for exponential distribution under multiple Type-Il censoring. Journal of the Korean Data & Information Science Society, Vol. 14, 983-988
  4. Kang, S. B. and Lee, S. K. (2005). AMLEs for the exponential distribution based on multiple Type-II censored samples. The Korean Communications in Statistics, Vol. 12, 603-613 https://doi.org/10.5351/CKSS.2005.12.3.603
  5. Lin, C.T. and Balakrishnan, N. (2003). Exact prediction intervals for exponential distributions based on doubly Type-Il censored samples. Journal of Applied Statistics, Vol. 30, 783-801 https://doi.org/10.1080/0266476032000076056
  6. Pettitt, A.N. (1976). Cramer-von Mises statistics for testing normality with censored samples. Biometrika, Vol. 63, 475-481
  7. Pettitt, A.N. and Stephens, M.A. (1976). Modified Cramer-von Mises statistics for censored data. Biometrika, Vol. 63, 291-298
  8. Porter III, J.E, Coleman, J.W., and Moore, A.H. (1992). Modified KS, AD, and C-vM tests for the Pareto distribution with unknown location & scale parameters. IEEE Transaction on Reliability, Vol. 41, 112-117 https://doi.org/10.1109/24.126681
  9. Puig, P. and Stephens, M.A. (2000). Tests of fit for the Laplace distribution with applications. Technometrics, Vol. 42, 417-424 https://doi.org/10.2307/1270952
  10. Upadhyay, S.K., Singh, U., and Shastri, V. (1996). Estimation of exponential parameters under multiply Type-Il censoring. Communications in Statistics- Simulation and Computation, Vol. 25, 801-815 https://doi.org/10.1080/03610919608813343

Cited by

  1. Goodness-of-fit test for the logistic distribution based on multiply type-II censored samples vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.195
  2. Goodness-of-fit tests for the inverse Weibull or extreme value distribution based on multiply type-II censored samples vol.25, pp.4, 2014, https://doi.org/10.7465/jkdi.2014.25.4.903