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BAYESIAN ROBUST ANALYSIS FOR NON-NORMAL
DATA BASED ON A PERTURBED-t MODEL

Hea-Jung Kim!

ABSTRACT

The article develops a new class of distributions by introducing a non-
negative perturbing function to t, distribution having location and scale
parameters. The class is obtained by using transformations and condition-
ing. The class strictly includes ¢, and skew-t, distributions. It provides yet
other models useful for selection modeling and robustness analysis. Analytic
forms of the densities are obtained and distributional properties are studied.
These developments are followed by an easy method for estimating the dis-
tribution by using Markov chain Monte Carlo. It is shown that the method
is straightforward to specify distributionally and to implement computation-
ally, with output readily adopted for constructing required criterion. The
method is illustrated by using a simulation study.
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1. INTRODUCTION

Suppose that the model where a random variable Z is distributed with density
9(z|0) and that it is desired to make inferences about 8, where ¢ is a g-dimensional
vector of unknown parameters. The usual statistical analysis assumes that a ran-
dom sample Z1, ..., Z, from g(z|0) can be observed. There are many situations,
however, in which such a random sample might not be available, for instance, if it
is too difficult or too costly to obtain. Then statistical models have to be devel-
oped to incorporate the non-randomness or bias in the observations. Weighted
distributions (Rao, 1985) arise when the density of the potential observation
z gets distorted so that it is multiplied by some non-negative weight function
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h(z|6,), which involves some unknown parameters denoted by a vector . Thus,
the observed data is a random sample from the following weighted version of

9(210).

h(z|9, )
Es[h(Z10,7))’
where the expectation is taken with respect to the distribution g(z|d).
A particular class of the weighted distributions (1.1) is the “selection model”
in which observations are obtained only from a selected portion of the popula-
tion of interest. For example, the observation Z of a characteristic of a certain

f(216,7) = g(29) (1.1)

population is measured only for individuals who manifest a certain disease due
to cost or ethical reasons (Bayarri and DeGroot, 1992). For such problems, the
goal is to find estimator of § in the presence of the nuisance weight function h.

A different point of view is given by a robustness argument. If g(z|6) is the
central model of interest, then the weight function h in (1.1) can be seen as a
perturbing (or perturbation of g(z|d)) function. For instance, if g is an elliptical
probability density function, then h generates asymmetric outliers in the observed
sample from f. The goal is then to derive robust estimator of 4, in the presence of
a certain class of the nuisance weight function h. Under the robust argument, the
class of weighted distributions includes a vast set of skew distributions, such as
skew-normal, skew-t, skew-elliptical and generalized skew-elliptical distributions..
Systematic treatments of these distributions have been given by Azzalini (1985),
Branco and Dey (2001) and Ma et al. (2005), among others. They call the
weight function h as “skew function” in a sense that it is useful to modeling
random phenomena which have heavier tails than the normal as well as having
some skewness.

The major goal of current paper is to introduce yet other subclass of weighted
distributions, i.e., a class of perturbed-t, distributions, that is useful for selection
modeling and robustness analysis. It also suggests a Markov chain Monte Carlo
(MCMC) method for estimating the location and scale parameters, 6, of the cen-
tral part of the model as well as the parameters, «y, in the perturbed function.
The interest in studying the class of perturbed-¢, distributions, strictly including
skew-t, and t, distributions, comes from both theoretical and applied directions.
On the theoretical side, it provides a class of distributions that enjoys a num-
ber of formal properties which resemble those of skew-¢, distribution introduced
by Branco and Dey (2001) and Kim (2002). From the applied view point, the
class is a set of unimodal empirical distributions with presence of skewness and
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possibly heavy (or light) tail. This implies that the class is useful to modeling
random phenomena which have heavier (or lighter) tails than the normal as well
as having some skewness. Moreover, the class provides yet other selection models
that enable us to analyze a screened data in terms of the sum of truncated and
untruncated observations.

The article organized as follows. Section 2 develops a class of perturbed ellip-
tical distributions that is useful for selection modeling and robustness analysis.
Section 3 considers the particular case of t, distribution. In particular proba-
bilistic and conditional representations of the perturbed-t, distribution and its
properties are given. In Section 4, some moments of the distribution are derived.
In Section 5, we develop an easy implementation technique, MCMC method,
for estimating the distribution. In Section 6 a numerical example validating the
MCMC method is given. We give few summary remarks in Section 7.

2. THE CLASS OF PERTURBED ELLIPTICAL DISTRIBUTIONS

A distribution of & x 1 random vector X, written X ~ EC(6,%, ¢'¥), is said
to have k-variate elliptically symmetric (or simply elliptical) distribution with
location vector § € R¥ and a k x k (positive definite) dispersion matrix ¥ and
the density generator function g(*). The density of X distribution is given by

F(x(8,%) = 2] 2g® ((x — 0=} (x — 6)), (2.1)
for some density generator function g(¥)(u), u > 0, such that
/0 u®/2=1 8 () dyy = T (e /2) /2. (2.2)

This implies that ¢g(*¥) is a spherical k-dimensional density. When the density
. function of the elliptical distribution does not exist, we use the characteristic
function ¢ and replace the density generator function ¢(*) in the notation and
use X ~ ECy(0,%,¢). By varying the function g*), distributions with longer
or shorter tails than the multivariate normal can be obtained. A comprehensive
review of the properties and characterizations of multivariate elliptical distribu-
tions can be found in Fang et al. (1990) and Fang and Zhang (1990). If we set

=2 and ¥ = {4;} with ¢1; = ¢22 = 1 and 12 = P21 = p, the properties of
EC5(0,¥,¢®) distribution yield following theorems. From now on, we will use
¥ to denote this standard form of 2 x 2 dispersion matrix.

LEMMA 2.1. Let W ~ EC3(0,¥,9?), W = (Wy,Wy). Then the condi-
tional distribution of Wy given that W1 = w is ECi(a, B, ggw)) distribution.
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Here a = pw, B =1 — p?, Iq(w) = g (u + q(w))/g(l)(q(w)), where g(l)(u) =
2 [5° 9P (% + u)dr and q(w) = w?.

PRrROOF. Straightforward application of the result of Branco and Dey (2001)
yields the result. a

LEMMA 2.2. Let W ~ EC5(O0, ,¢?), W= (w1, w2) . If z is set to equal to
W1 conditionally on a < Wy < b. Then the pdf of z is

fg(l) (Z){ng(z) ()\1b — )\z) - ng(z) (Ala - /\Z)}

Fyay(b) — Fy (a)
where A = p/+/1 — p2, A\; = (1+XA)Y2 = 1//1 = p2, and fo () and Fya)(-) are
the pdf and the cdf of EC1(0,1,gM), respectively. Fy.(y 18 the cdf of ECY(0, 1, gy ()
with g(z) = 2%

fz(z) =

forzeR, (2.3)

ProOOF. The pdf of Z can be expressed as
fz(2) = Pla < Wa < b|2) fw, (2)/Pa < Wa < b).

Using the property of EC3(0,¥,g®) (Fang et al., 1990, p. 43) we obtain the
marginal distribution, W7 ~ EC1(0, 1, g(l)). Further Lemma 2.1 gives Wy [Wy =
z ~ ECi(a, B, 94(z)), and hence

Pla < Wy <blz) = P((a —a)//B< Wo—a)/\/B<(b—-a)/\/B ]z)

= Fy . (Mb—Az) = Fy_(Aa— Az).

9q(z) q(z)

Noticing that fw; (2) = f,)(2) and P(a < Wy < b) = Fy0)(b) — Fy) (a), we have

the result. O

Noticing, from the proof of Lemma 2.2, that

E [Fyyy (Mb—AZ) - F,

gq(z)(/\la - /\Z)] =F )(b) — Fg(l)(a) for z € R,

g

the density (2.3) is a proper type of the weighted distribution in (1.1). A gener-
alization of Lemma 2.2 gives following theorem.
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THEOREM 2.1. Let X = (X,Y), and let X ~ EC3(8,%,g®) with § =
(61,82), & = {04}, 0is = 02 and 012 = po102. Then, the pdf of Z = [X |a <
Y < b] variable is

fgm(ul(z)){ng,,(,)mu(b) “ur(2)) — Fy, o, (Mrua) - Am(z»}

f3(e) =
1{ Fy ul0) = o (u(0)

(2.4)
for z € R, where u1(z) = (z — 01)/01, u(a) = (a — 62)/02, u(b) = (b — )/,
Fy,.y 18 the cdf of EC1(0, 1, g4,(z)) with g«(2) = u1(2)2.

PROOF. Given the density (2.3), the density is obtained through the trans-
formation relations X = o9 W1 +6; and Y = o9 W3 + 5. The density of a
random variable Z with a perturbed symmetric distribution is defined through
an elliptical function and a perturbing function as follows. a

DEFINITION 2.1. If a random variable Z has density function (2.4), then we
say that Z is a perturbed symmetric random variable with parameters 0, ¥ and
perturbing function

(B Oua) = 312 = B, Ore) — Yun (20

{ Py w8 = i (u(a)

For brevity we shall also say that Z is PS(, (0, %, @) random variable.

It is easily seen that the class of PS4 (6, %, g@) distributions strictly in-
cludes skew-normal, skew-elliptical, generalized skew-elliptical, and elliptically
symmetric distributions as special members:

(i) When a = 63, b = 0o, and g(® is bivariate normal density generator func-
tion, PS(ap) (0, %, g reduces to the skew-normal distribution introduced
by Azzalini (1985).

(ii) When a = 62 and b = oo, PS(,)(8, %, g®) distribution is the skew-elliptical
distribution by Branco and Dey (2001).

(iii)) When a = 03, b = oo and p/4/1 — p? = 1, PS(a,b)(O,E,g@)) distribution
becomes the skew-elliptical distribution by Branco and Dey (2001).
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(iv) When p = 0, PS4 (9,%,¢?) distribution is the elliptically symmetric
distribution. In other words, the suggested class of perturbed symmetric
distributions contains many families of weighted distributions as well as
standard elliptically symmetric families. Therefore, the proposed class of
distributions is expected to extend earlier results on selection modeling and
robustness analysis for the central model of interest.

In this paper, we restrict our attention to the situation where g(2) is bivariate
t, density generator function, in order to accommodate the application of mixed
normal distribution theory in the robustness analysis and the heavy tailed random
phenomena with some skewness.

3. PERTURBED-t DISTRIBUTIONS

From Lemma 2.1 and Theorem 2.1, we can get an alternative and convenient
expression for the pdf of PS(a,b)(O, Y, g(z)) distribution as

i o (S 4 we) dr
/T = 2 { Py (u(b)) - Fy,y (u(e)}

The generator function for a bivariate t,-distribution with the degrees of freedom

Fi(z) = 2€R. (3.1)

vis

¥ (u) = Cy[v + u]~#+2/2, (3.2)
where C1 = v*/2T'((v +2)/2)/{m T'(v/2)}. It follows from (3.1) that the pdf f3(z)
obtained from using the generator function (3.2) is

C1{Fu(u(b)) F, (u(a )}t {T‘—pul(z)}z \ —(v+2)/2
/(a) [ T ul) dr
_G {FV(U(b)) ~ Fy(u(a )3t o) Y
- 201{u (22} 2 o Cs (v +1+6) 7" ar
fr @) {F1(n2(2)) - Fn(m@)}t (3.3)

o1 {F,(u(b)) — F,(u(a))} ’
where f,(-) and F,(-) denote the pdf and the cdf of a univariate standard ¢,
distribution, while Fy,;1(-) is the cdf of a univariate standard t,.; distribu-
tion. Here Cy = v*/?T'((v + 1)/2)/{y7 T(v/2)}, C3 = (v + 1)F*+V/2D((v +
2)/2)/{v7® T((v +1)/2)}), vi(2z) = (\u(a) — M (2))Vv +1/3/v +ui(2)? and
v2(z) = (Mu(b) — Mui (2))vv + 1/4/v + u1(2)2. We see that the density (3.3) of a
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random variable with a perturbed-¢ distribution is defined through a generalized
t-density and a perturbing function as follows.

DEFINITION 3.1. A perturbed-t, distribution, written by PT (y(a), u(s)) (61,01,
p, V), is a distribution whose probability density function is of the form

fu(ui(2)) [Fri1(v2(2)) — Fo1(vi(2))]
o1 [Fy(u(b)) — Fy(u(a))]

where notations in (3.4) are the same as those in (3.3) and we refer to [Fy,4+1(v2(2))
—Fi1(v1(2))]/[Fo(u(b)) — F.(u(a))] as the perturbing function.

fz(2) = , z€R, (3.4)

Now we will state some interesting properties for the PT(u(a)’u(b))(Gl,al,p, v)
distribution as well as the associate examples. Theorem 2.1 immediately gives
the following property.

PROPERTY 3.1. Let X = (X,Y) be a bivariate t, variable with a location
vector § = (61,62)' and a scale matrizx ¥ = {oi;}, that is X ~ t,(0,X). Then
Z= [X lae <Y < b] ~ PT(u(a),u(b)) (01,01, p,V).

PROPERTY 3.2. For T ~ t,(61,01), a generalized univariate t, with the
mean 0y and the scale parameter oy,

E[F,11(v2(T)) = Fup1(v1(T))] = F,(u(b)) - F,(u(a)).
PROPERTY 3.3.  The distribution function of Z ~ PT (y(q)up))(01,01,0,V)

Py — He2),u) - H,(1(2), u(e)
g (P, (u(b) = Fu{ula))}

where Hy (21, z2) denotes the standard bivariate t distribution function whose for-
mula is given by Dunnett and Sobel (1954).

18

, 2€R, (3.5)

PROPERTY 3.4. If Z ~ 'PT(u(a),u(b))(el, o1, p, 1/), then
—Z ~ PT(u(a),u(b))(_oh g1, — P, I/).

PROPERTY 3.5. LetT = (Z — 91)/0’1, where Z ~ PT(u(a),u(b)) (91, g1, p, I/).
Then
T ~ PT (ua),upy) (0,1, p, V). (3.6)
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PROPERTY 3.6. IfT ~ PT(u(a),u(b)) 0,1, p,v), then
~T ~ PT (ua), uv) (0 1, =0, V) = PT _ut), —u(a))(0, 1, 0, V).

Following theorem gives a probabilistic representation of the P7 (y(q),u(5))(0 1,
p,v) distribution in terms of mixed normal and mixed truncated normal laws.

THEOREM 3.1. Conditional on n ~ Gamma(v/2,2/v), let U ~ N(0,n71)
and V ~ N(0,1771) be independent normal variables. Then the scale mized dis-
tribution of T is

A 1
Uua w)) T —T—=
N EwYi (u(a), u(b)) Vit

where Uy(a), u(p)) denotes the truncated N (0, n~1) with upper and lower truncation

T

il

V ~ PT (u(a)u(v)) (0, 1, p, 1), (3.7)

points are u(b) and u(a), respectively.

PrOOF. Let a = u(a), 8 = u(b), a = A\/V1+ A2, b=1/V1+ A2 and f(n)

be the density of 7. Then we have
P(T <t) = EyEIP(T < t|Uta,), )]
= [T [ wp < (6= et fmoun L 9) - Fila)
= /Ooo /a "0t — aw) D)6 u) fm)Budn {FL(B) — Fu(e)}

and from the relation a® + b2 = 1 it easily follows that f(t) = dP(T < t)/dt is
/0°° /aﬁ {le(/;;ﬁ En;/'j&)} (27:]1)2 ) Fexp {_n(u2;b2at)2} £ (m)dudn
- /Ooo [szl(g;pgnzja)] {‘I’ (nm(ﬂb— at)) -2 (W) }f (m)dn
/ / — V/g/{QF”/( 277)”/ ? o {_ v+t + {(1; - at)/b}2]77} Sndu

- BT C:tlz)m/jf"“((::;)m (u_bat)>d“’

where f, and f,41 is standard t, and ¢,4; densities, respectively. A variable
transformation v’ = {(v + 1)/(v + t2)}'/?(u — at)/b and letting o = u(a) and
B = u(b) to the last equation gives the pdf of (3.5) obtained from (3.4). O
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It is easily seen that the distribution (3.4) leads to a parametric class of
distributions that have strict inclusion of ¢, distribution (for the case §; = 0,
o1 = 1 and p = 0) and a perturbed Cauchy distribution (for v = 1). Also
note that (3.7) reduces to a perturbed normal distribution, written PN (y(a), u(s))
(0,1, p), when the distribution of 1 is degenerate with n = 1.

Thus the representation in (3.7) reveals the structure of the class of PT (y(a) u(b))
(0,1, p,v) distributions and indicates the kind of departure from the standard ¢,
distribution. Furthermore, the representation provides one-for-one method of
generating a random variable Z with density (3.4). The method is the following
one. Sample 7 from Gamma(v/2,2/v). Then sample Uiy(), up)) and V from
respective T'N(y(a), u(ry) (0:7 1) and N (0, n~!) distributions to generate Z from
the equation:

A 1

Tie e, o) T A AQV}-

Here T'Ny(a), u(b)) (0,7~!) denotes a truncated normal distribution with upper and
lower truncation points u(b) and u(a). A sample of Uy(q), u(p)) 1s €asily extracted
from the truncated distribution by using the one-for-one method documented by
Devroye (1986). Figure 3.1 depicts various density shapes of P7 (y(a),u(r))(0; 1, o, V)
distribution. Figure 3.1 notes that the distribution induces not only skewness but
also high kurtosis to ¢, distribution. Also note from Property 3.6 that the density
of —Z can be obtained from changing the sign of p. .

Z=91+0’1{

2 4

FIGURE 3.1 Various Shapes of the PT (u(a),uv)) (0,1, p,v) densities with v = 5: (a) u(a) = —.5,
u(b) = .5, and p = .8; (b) u(a) = =5, u(b) = 3, and p = .8; (c) ula) = ~.5, u(b) = 3, and
p=.5; (d) u(a) = —.5, u(b) = 3, and p = .2; (e) standard student t; density.
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4. MOMENTS

4.1. Moment Generating Function

In this section we derive the moment generating function (MGF) for the
perturbed-t distribution. To compute the moments of Z ~ PT g, u(b))(91, o1, P,
v), it suffices to compute the moments of T' ~ PT 4, 4))(0,1, p,v) by Property
6.5, where a = u(a) and 8 = u(b). From the proof of Theorem 3.1, we see that T’
has the density which can be expressed as

© _n2¢(n'?t) /(6 — at) n2(c. — at)
/o [F(8) — Fu(a)] [q) ( b ) - @ (—‘g—ﬂ f(mdn (4.1)

for t € R, where a = A\/v1+ A2, b = 1/v/1+ )2, and f(n) be the density of
n ~ Gamma(v/2,2/v).

THEOREM 4.1. LetT PT (4, 3))(0,1, p, V) then its moment generating func-
tion is
gy B ({2030 — 2(e0)e )]
M= T RG - Rl
for £ € R, where E, denotes that the expectation is taken with respect to the
distribution of n ~ Gamma(v/2,2/v), ag = an'/? — an~1/2¢ and B, = pn'/? —
an~1/2¢.

(4.2)

Proor. Considering the pdf (4.1) and £ € R, we have the mgf written as

/ / nl/2 42/(2n)e—n(t /n)*/2
- F(a)]

1/2(8 — ¢ 1/2(0 — g
x{@ <1’—(—ﬂb—i)) ~® ("—-(—b—ﬁ) } F(m)dtdn.

Using the transformation ¢ = n~1/2w + n~1¢, one finds

°°e“/<2">EW[®(b<W>) ®(a(W))]
Mr(6) =
0 {F.(8) — Fu(a)}
where Eyw denotes that the expectation is taken with respect to W ~ N(0,1)
variable. Here a(W) = n*/2a/b— a(W +n71/2£)/b and b(W) = n'/23/b— a(W +
n~1/2¢) /b. Thus we can derive the mgf (4.2) by applying the well-known fact that
Ew[®(hW + k)] = ®(k/V1 + h?) (Zacks, 1981, pp. 53-54). O

f(n)dn,
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4.2. Moments of the Perturbed Distribution

Naturally, the moments of T' can be obtained by using the moment generating
function differentiation. For example,

BT = My(O)l—o =~ £ By [0 (68 - 0@}, (43)

where 8, = F,(8) — F,(a), o* = n'/2a and §* = n'/23. Unfortunately, for higher
moments this rapidly becomes tedious.
An alternative procedure makes use of the fact that

S 9(a)] = (k + 1)2*6(@) - 2++2(z) (49

for k = -1,0,1,2,3,..., yields the following result.
Assume 7 is fixed and let W = 7'/2T. Under the distribution (4.1), the relation
(4.4) and integrating by parts gives the following conditional moment.

E[(k + 1)Wk — Wwkt2 | 7] = /°° {(k + l)wlc — wk+2}g(w)dw

_ 1 * wF — W2V e(w
- 57w LD o)

x{® (6*/b — aw/b) — & (a*/b — aw/b) }dw
- {68 BV + oy
o(6*) - 2(a¥)

_ (") E[V + aa*/b]k“}

for £ > —1. By introducing the distribution 7, we have the unconditional moment
of E[(k+ 1)W* — W¥*+2] that is

oy {$(BVEV + a8 /6" = $(a)E [V +ac*/a]**1} f(n)dn (45

A a o)E[V +aa”/a] mdn  (4.5)
for k= —-1,0,1,..., where V is a N(0,1) variate.

By setting k£ = —1,0, 1, we obtain three expressions, which may be solved to

yield the first three moments of 7. Higher moments could be found similarly.
One obtains,

BIT] = £ 5, [n7/{6(8) — é(a")}]

pl/u/2 I ((1/ - 1)/2)
= (v-1)/2 _ (v—1)/2
251\/_ (l//2) {A B } for v > 1,
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2
B(I?) = Byl '] = £y [n7{6"0(8%) ~ "9(e)"}]
I i (R VP
=, 27 20,y/7  T(v/2)

{ozA”(”_l)/2 — ﬁB“("_l)/2} for v > 2,

E[T3] = _B%En [77—3/2{(3 _. P2 + ,3*,02)¢(ﬁ*) _ (3 _ p2 n a*p2)¢(a*)}]
PU"/2 o "
= W [(3 — pZ)F((l/ — 3)/2) {A (v=-3)/2 _ g—( 3)/2}

+ V20T (v — 2)/2) {aA‘(”_2)/2 - ﬂB“(”‘2>/2H for v > 3,

where A = v + o? and B = v + (%, By using the Binomial expansion, one
can see, from Property 3.3, that the general formula for the moments of Z ~
PT(Q, B8)) (01’ g1, P, V) is

k
AN ‘
E(Z% =) ( ,)0’; 151 E[T). (4.6)

—\J

j
When 8, = 0, E[Z¥] = ¢FE[T¥]. It is also noted that existence of the moments
depends on the mixing distribution n ~ Gamma(v/2,2/v). Given the variance
T, Var(T) = E[T?] — (E[T))?, the skewness of Z ~ PT(,4)(,%,v) variable is
given by the following theorem.

THEOREM 4.2. Let ug’()u(a) o) be the skewness (the standardized third central

moment) of Uya, u(p)) ~ Ttv(u(a), u(b)). Then, for v > 3, the skewness ,u(Z?’) of
the Z ~ PT (y(a), uiv)) (01,01, p, V) variable is

2.3 (3)
(3 _ )\{)‘ O-U(u(a)» u(b))'uU(u(a), u(b)) + K(V)} a7
e = o3 ’ (4.7)

where Tt,(a, ) denotes a truncated t,-distribution with respective lower and
upper truncation points a and B, 0% = (1 + A\:)Var(T), Ulzf(u(a) ooy = {1+
AYWar(T) —v/(v—2)}/)2, and
I((v —3)/2)v"/?
K = =320
461/ T'(v/2)

V(VV:23) {(1/ 4 a(u)2)—(u—1)/2 —(v+ b(u)2)—(v—1)/2}] ,

where K(v) > 0 for u(b)? >_u(a)2, K(v) =0 for u(b)? = u(a)?, K(v) < 0 for
u(b)? < u(a)?, A = p//1— p? and & = F,(u(b)) — F,(u(a)).

[ {(V +a(w)?) =2 (4 b(u)2)—(”_3)/2}
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PrOOF. Let u(a) = (a — 61)/01 = @ and u(b) = (b— 61)/01 = B, and let
T* = (14 X)Y2T, where T ~ PT (a, 3)(0,1,p,v). Then the standardized third
central moment of Z = 01T + 6 variable is equivalent to that of T*, i.e., “(23) =
/Lg?) = ug’,) From Theorem 3.1, we see that E[T* — E(T*)]*> = E,E[(AU(s,p) —
)\EU(Q,,@) + V)3 | 77] = )\3E[U(a’ﬁ) — EU(a”@)]?’ + 3)\E,7E[(U(a,5) — EU(a,g))Vz [T]] =

)\30[3]((1’6)#&1!3) + MK (v), where K(v) = 3EE[(U(a,5) — EU(o,5))V? 7] and n ~
Gamma(v/2,2/v). Thus, ,ug’) = ugi) =A {)\QU?J(Q ﬂ)ug()a 5T K(l/)} /o3, where
02, = 1+ )Var(T) = )\20(21((!)[3) +0%. One can observe that Ua,8) ~ Ttu(a, B),
a truncated ¢,-distribution, and V ~ t,. Since 0% = v/(v — 2), we have Ulzj(a,ﬁ) =
{(1 + X2)Var(T) — v/(v — 2)}/A%. After some algebra using the moments of a

truncated normal distribution (Johnson et al., 1994, p. 156), we obtain the
expression of K(v) given by

K(v) = 3{EyE[U(a,)V? In] = EnE[Uta,s) 1 E,E[V? 1]}
B F./(TEFV(&S {Ealn*(6(n*/0) - $(n*/20))]

v—2

Byl (n"%a) - ¢(nl/2ﬂ)]} -

Evaluating the expectation with respect to n ~ Gamma(v/2,2/v) variable gives
the expression for K(v). The condition for K (v) = 0 is trivial. For 8% > o2, we
see that v{(v+a?)~“=D/2 (b4 62)=-V/2} < {v/(v+ ) H{ (v +a?)~ =372 -
(v+ B2~ =32} < {(v+ a?)~=3)/2 — (v + §2)~(*—3)/2}, Thus the inequality,
K (v) > 0 holds for 82 > o?. Similar argument gives the condition for K (v) < 0.

O

COROLLARY 4.1.

(i) For|u(a)| < u(b), the PT(q4)(0, X, v) distribution is skewed to the right (the
left) when p > 0 (p < 0).

(ii) For the case |u(a)| > u(b), the distribution is skewed to the right (the left)
when p < 0 (p > 0).

(111) Finally, for the case |u(a)| = u(b), the distribution is symmetric.

(3)

Uta(a), u(o)

for |u(a)] < wu(b), ,u(UB(ZL(a) oy S 0 for |u(a)] > u(b), and ugi(a) oy = 0 for
|u(a)| = u(b). This fact and Theorem 4.2 immediately give the results. O

PROOF. Since Uiy(a), up)) ~ Ttv(u(a), u(b)), it is obvious that p
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We see that Figure 3.1 and Property 3.5 coincide with the results of Corollary
4.1. The class of PT (y(a), u(s))(1, 01, p, V) distribution includes well-known skew-
elliptical distributions as in the following two examples.

EXAMPLE 4.1. One member of the P7 (,(a), u())(61,01,p,v) distribution is
the skew-normal distribution, SN (61,01, A), by Azzalini (1985). This is obtained
from (3.6) by setting a = 01, b = oo and 7 being degenerate with n =1 in (3.7).
Its pdf reduces to

f72(2) = 2/016(u(2))®(Au1(2)), z€R. (4.8)

From (4.6), one finds the moments:

E|Z] = 01 + o1p\/2/7, Var(Z) = a?(1 - 2p%/7)

and

1) = (4/n = 1)\/2/mpP(1 — 20 /)32, (4.9)
These values of Z agree with those given in Arnold et al. (1993). See Azzalini
(1985) and Henze (1986) for the other properties of the distribution.

EXAMPLE 4.2. Another member of the PT (y(a), u(3)) (61, 01, p, V) distribution
is the generalized skew-t, distribution. When a = 6; and b = oo, the pdfin (3.4)
reduces to

(4.10)

£3(2) = 2/o1fo(wr(2)) Fora (Ml——— V”“) L eR

Vv +ui(z)?
This distribution is equivalent to the generalized skew-t, distribution, written
ST (01,01,v, ), considered by Kim (2002) and Branco and Dey (2001) . From
(4.6), we obtain, for v > 1,

E[Z] = 61 + o1p\/v[nT((v — 1)/2)/T(v/2),
Var(Z) = o?v/(v — 2) — E[Z]? forv > 2,

p(Zz) = A/Var(Z)*? forv > 3, (4.11)
where
_ v\1/2 3wl'((v—1)/2) 1
A4 =oi) { ;) (1T X2)2(0 — 2)T(/2) (u 37 A2B) } !
_f2v-2) 20 -D{(v - 1)/2)’ _
B= {3@—3) M= Py ‘1} md A=
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These two examples show that P7 (y(a), u(s)) (01,01, p, v) distribution extends the
skew-normal and skew-t distributions where only the case of (§2 = 0,02 = 1) and
(@ = 61,b = 00) is considered. See Kim (2002) and Branco and Dey (2001) for
the other properties and applications of the distribution (4.10).

5. MCMC METHOD

In this section we develop computational procedure for the estimation of the
perturbed ¢,-distribution by using a Markov chain Monte Carlo (MCMC). In
order to specify the model (3.4) for MCMC computation we use the hierarchical
setup of the Z distribution.

5.1. A Metropolis-Hastings Algorithm

Let Z1, 23, ..., Zn be arandom sample of size n obtained from the P7 (y(a), u())
(01,01, p,v) distribution. Then, using Theorem 3.1 and Property 3.5 we have the
following full likelihood specification.

Zil(yi, 01, 01, pyu(b), mi) ~ N(pory; + 03,05(1 — p?)/m;) for i=1,...,n,
Y; ~ N0, D I(u(a) < y; < u(b)) for i=1,...,n,
6y ~ N(6g, %),

o1 ~ VSxt,
p ~ Uniform(—1,1),
u(b) ~ Uniform(F;  (p),4),
n; ~ Gamma(v/2,2/v) for i=1,...,n,
v~ w(v)I(v > 3),

where p = F,(u(b)) — F,(u(a)), u(a) = F,;1(F,(u(b)) — p). In the the perturbed
normal case, the last two distributional specifications are omitted and £, is
changed to ®. Although the parameter v is traditionally taken as an integral,
it can be treated as a continuous parameter taking positive values since the as-
sociated densities are well defined in this case. We assume the distribution v is
constrained (v > 3). The constraint assures the finiteness of the mean and vari-
ance of the associated perturbed ¢, distribution. As usual in the case of selection
modeling, we assume that p, is priori known.

All of the full conditional distributions of the parameters are given by

Yi|(zi, 01, 01, p, u(b), i, v) ~ N(pzi, (1~ p*)/mi)I(u(a) < yi < u(b)),
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T’of(1 - p?)
ell(y,Z,Ul,Pyu(b)aﬂaV) ~ N (0*7 1 ) ’
T2 i+ ot (1 - p?)

v+2 2(1 - p?) )
2 T2l -2omyi+yi+(1-pw)’

nll(Ya z, 017 g1, P, U(b), V) ~ Gamma (

p(al IY: z, 017 P, U(b), 7, I/) X U;(n+m+1) exp(—Q*),

_ n i mi(y2 — 2pyizi + 22
Ploly, 2, 01,01, ), 7)o (1 = ) Pexp { - imL MU Z2Um L)

POy, 2 61,01,p,m0) o [] (2(0/u)) — 20} *u(a)))
i=1

xI(F;H(p) < u(b) <4),

where u(a) = F,1(F,(u(b)) — p),

230 iz — porys) + (1 — p?)a2bo

Ir; = (zi bt 91)/0’1, 0* =
T2y mi+ (1 p?)ot

and
(L—p")S+ 301 mi(zi — 61)° — 2001 30, miyi(2: — 61)

201(1~ p?) ’
Finally, we sample v from its full conditional distribution. The conditional likeli-
hood function L(v|z, 61,01, p, w(d)) is [Ii—; f5(zi), where f}(z) is defined in (3.4).
The full conditional posterior density is proportional to L(v|z, 8y, 01, p, u(b))7(v)
I(v > 3). Since u(a) and u(b) appearing in the full conditional distributions of ¥;
and u(b) involve v, this is a simple way of obtaining the full conditional

Because of the complexity of the full conditional distributions, we use Metropo-
lis steps to generate o1, p, u(b), and v. Then the Metropolis-Hastings algorithm
is obtained by drawing from all the full conditionals of the parameters in turn,
proceeding until convergence.

A sample of Y; variable is easily extracted from the truncated normal distri-
bution by using the method documented by Devroye (1986). We have, however,
little knowledge about the shapes of the full conditional distributions of o3, p,
u(b), and v. This fact suggests using the Metropolis-Hastings sampling algorithm
(Gustafson, 1998). For the Metropolis step for sampling o1 and p, Kim (2005)
elaborated the Random Walk Metropolis algorithm by applying parameter de-

Q" =

constraint transformations to o; and p. Therefore, to complete computational
procedure for the Metropolis-Hastings sampling algorithm under the above like-
lihood specification, we need to develop algorithms to sample w(b) and v from
their respective full conditional distributions.
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5.2. Random Variate Generations of v and u(b)

It is convenient to transform v to 1 where 1 = v~1. Then the full conditional
posterior density for ¢ with a Uniform(0,1/3) prior density 7(v) is

W(‘/)\y, Z, 01a 01, P, U(b), T’) & W(Tb)h(wly, z, 01, 01, P, u(b), n)a (51)

where
h =% ~2L(v|z, 01,01, p,u(b))I(v > 3),

h = h(1|z,0;, 01, p,u(b)). A way of generating v is to use a Metropolis step (Chib
and Greenberg, 1995) using the Uniform prior on ¢. We set a proposal density
q(¢,¢*) = w(¢*) which supplies candidate values 1* given the current value of 1.
In this case, the probability of move requires only the computation of h function.
Thus the (k + 1)th iteration of the Metropolis step is given by

Step 1. Generate ¢* from a Uniform(0,1/3).
Step 2. Generate u from a Uniform(0,1).

Step 8. If u < h(¥*|01, 01, p, pu, u(b), 2, ¥)/ R P01, 01, p, P, u(b),2,y) then
Pp*+D) = p*. otherwise, Yp*+t1) = k),

After obtaining ¥**1), we compute v**1) by using the relation v = 1/3. Note
that the proposal density need not to enforce the interval constraint, because it
is a Uni form distribution on 0 < ¢ < 1/3.

The same algorithm applies for sampling «(b) form its full conditional poste-
rior density:

n(u(®)|01, 01, p,2,y) o< w(u(®) [ [{20*ud) — 20} *u@))] ", (5.2

=1

where u(a) = F;}(F,(u(b)) — p) and n(u(b)) is the Uniform(F, !(p),4) prior
density for u(b). Note that, for generating u(b), Step 1 of the above Metropolis

”»

algorithm need to be changed to “Generate u(b)* from a Uniform(F, (p,),4)”,
and u(a)* can be calculated from u(a)* = F,}(F,(u(b)*) — p). Thus we use a

Metropolis step to draw o1, p, v and u(b) and the Gibbs sample is obtained by
drawing y, 7, 61, o1, p, u(b) and v in turn, after convergence.



436 Hea-Jung KM

6. A SIMULATION STUDY

Our example is an illustration of extensive studies we have undertaken to vali-
date the MCMC method. We generated n observations from P7 (), u(s)) (01, 01,
p,v) distribution using the algorithm in Section 3 and then ran the Gibbs sam-
pler for 60,000 iterations. We repeated this procedure 100 times. For the starting
points of the sampler, it appears that the sample mean and the sample standard
deviation are reasonable starting points for 8 and o;. In an attempt to test the
robustness of the sampler, we started p, b, and v well away from their true values,
i.e. the true value of p plus 0.2, the true value of v plus 2, and the true value
of b plus 0.3. The hyperparameter specification was defined by § = 0, 7 = /10,
m = 3 and S = 10, reflecting rather vague initial information relative to that to
be provided by the data. Further, we set the hyperparameter p = 0.6, which usu-
ally be provided in the selection modeling case. A simulation study with various
sample sizes and set of true parameter values is conducted and estimation results
by 100 repetitions of the MCMC method are listed in Table 6.1. As given in Table
6.1, we see that the method produces accurate estimates for the parameters of
PT (u(a), u(b)) (61,01, p, v) distribution.

For calculating the estimates, the iterative process was monitored by observ-
ing trace of Gibbs samples. The diagnostic we used are described in Cowles and
Carlin (1996). For each data set, we used 40,000 iterations to “burn in” the
sampler; the decision is based on trace plots of the ergodic averages of the trace
of the parameters, (0;,01,p, v, u(b)), leading us to believe that convergence has
been attained before 40,000 iterations. By adjusting the tuning constant (stan-
dard deviations of the transition density in the RW Metropolis algorithm), we
were able to keep the jumping probabilities between 0.23 and 0.5 (Gelman et al.,
1996; Robert et al., 1997).

7. CONCLUSION

This paper has presented a new class of perturbed ¢,-distributions and its
Bayesian estimation. To form the class of distributions, we considered a condi-
tioning method to the bivariate {,-distributions. This introduces yet other weight
function, inducing perturbation of the symmetry with univariate £,-distribution,
that brings additional flexibility of modeling skewed and heavy tailed distribution
as well as high kurtosis distribution. Several properties of the class are studied.
The study shows that we have at hand a class of distributions with following
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TABLE 6.1 Estimation Results for PT (y(a), u(v))(01,01, p, V) distribution. Standard Error of the
FEstimate is in the Parenthesis

True Value

(P, v, 017 o1, ’U,(b)) n

Mean of 100 Repeated Posterior Means (Standard Error)

p

v

u(b)

61 d1

(0.3,10,5,2,1.5) 20

50
100

0.351(0.077)
0.341(0.078)
0.313(0.075)

9.418(1.601)
9.387(1.451)
9.833(1.328)

4.551(0.263) 2.318(0.295) 1.422(0.122
4.696(0.190) 2.156(0.208) 1.410(0.090
4.875(0.049) 2.063(0.127) 1.399(0.108

(03,10, -1, 2, 1.5) 20

50
100

0.417(0.115)
0.256(0.092)
0.262(0.058)

12.164(1.760)
11.123(1.186)

)
)
)
-1.043(0.268) 1.880(0.196) 1.336(0.197)
-1.041(0.262) 1.913(0.181) 1.436(0.148)

)

9.116(1.325) -0.973(0.239) 2.073(0.189) 1.415(0.067

(0.5,10,5,2,1.5) 20

50
100

0.548(0.073)
0.465(0.078)
0.468(0.077)

9.468(1.843)
9.401(1.528)
9.877(1.316)

4.699(0.275) 2.215(0.280) 1.423(0.166)
4.896(0.265) 2.040(0.296) 1.405(0.165)
5.047(0.135) 1.973(0.146) 1.401(0.059)

(0.5, 5,10, 2, 1.5) 20

50
100

0.547(0.064)
0.541(0.056)
0.537(0.039)

6.164(1.756)
6.195(1.546)
5.621(1.315)

9.463(0.339) 2.179(0.217) 1.403(0.162)
9.915(0.177) 2.150(0.140) 1.419(0.136)
9.958(0.113) 2.152(0.121) 1.460(0.098)

(0.8, 10, 5,2, 1.5) 20

50
100

0.686(0.074)
0.732(0.093)
0.741(0.075)

9.562(1.347)
9.950(1.168)
10.280(1.143)

4.984(0.207) 1.903(0.229) 1.425(0.051)
5.178(0.156) 1.894(0.161) 1.418(0.056)
5.209(0.116) 2.105(0.107) 1.408(0.069)

(-0.8, 10, 5,2, 15) 20

50

-0.720(0.071) 12.263(1.594)

-0.738(0.062)

11.373(1.443)

100 -0.823(0.047) 11.249(1.171)

4.893(0.279) 1.894(0.292) 1.452(0.057)

)
)
4.857(0.301) 1.849(0.180) 1.412(0.059)
)
4.889(0.208) 1.979(0.257) 1.447(0.048)

properties:

(i) inclusion of the normal, skewed-normal, t,, skewed-t,, and a perturbed

normal,

(i)
(i)
(iv)

mathematical tractability,

wide range of indices of skewness and kurtosis,

applicability in solving a screening problem in statistical inference.

Form the applied view point, the properties (i), (ii) and (iii) imply that the class
is useful for modeling random phenomena which have heavier (or righter) tails
than the normal as well as having some skewness. Furthermore, the simulation
study in Section 6 shows that the class of distributions is useful for the robust
estimation of 8; and o; form a sample with asymmetric outliers in the observed

sample from a true ¢, (or normal) distribution with mean ¢; and scale parameter

ag1.
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A different point of view is given by a selection modeling. Property 3.1 implies
that (iv) is immediate. Property 3.1 says that, by using P7 (y(a), u()) (01,91, 0, V)
distribution, one can solve the following screening problem: Consider the case
in which Y represents the or screening variable (permitting upper and lower
truncation on Y) and X represents the variable that is measured following initial
screening. We assume that X values are available only for the nontruncated Y
values, while the values of the random variable Y are not available. In this case
the screening problem is to estimate 6;, 61 and v of the marginal distribution of
X as well as the correlation p between X and Y. The MCMC method provides
estimates of 6;, o1 and v of X in the original unscreened population. Moreover,
an estimate of the correlation between the two variables in original unscreened
population can be also obtained, even though no Y observations are available.
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