References
- 서승남 (1990). 포물형 근사식에 의한 천해파 산정모델, 한국 해안.해양공학회지, 2(3), 134-142
- 해양수산부 (2005). 항만 및 어항 설계기준
- Berkhoff, J.C.W. (1972). Computation of combined refractiondiffraction. Proc. 13th Coastal Eng. Conf., 1, 471-490
- Berkhoff, J.C.W., Booij, N. and Radder, A.C. (1982). Verification of numerical wave propagation models for simple harmonic linear waves, Coastal Eng. 6, 255-279 https://doi.org/10.1016/0378-3839(82)90022-9
- Booij, N. (1981). Gravity waves on water with non-uniform depth and current. Rept. 81-1, Dept. of Civil Eng., Delft Univ. Technology
- Booij, N. (1983). A note on the accuracy of the mild-slope equation, Coastal Eng. 7, 191-203 https://doi.org/10.1016/0378-3839(83)90017-0
- Chamberlain, P.G. and Porter, D. (1995). 'The modified mildslope equation', J. Fluid Mech., 291, 393-407 https://doi.org/10.1017/S0022112095002758
- Dean, R.G. and Dalrymple, R.A. (1984). Water wave mechanics for engineers and scientists, Prentice-Hall, Englewood Cliffs, New Jersey
- Finlayson, B.A. (1972). Method of Weighted Residuals and Variational Principles, Academic Press, New York
- Goda, Y. (2000). Random seas and design of maritime structures, 2nd ed., World Scientific Pub., Singapore
- Hildebrant, F.B. (1965). Methods of Applied Mathematics, 2nd ed., Prentice-Hall, Englewood Cliffs, New Jersey
- Kirby, J.T. (1984). A note on linear surface wave-current interaction over slowly varying topography, J. Geophys. Res., 89(C1), 745-747 https://doi.org/10.1029/JC089iC01p00745
- Kirby, J.T. (1986a). Higher order approximations in the parabolic equation method for water waves, J. Geophys. Res., 91, 933-952 https://doi.org/10.1029/JC091iC01p00933
- Kirby, J.T. (1986b). Rational approximations in the parabolic equation method for water waves, Coastal Eng., 10, 355-378 https://doi.org/10.1016/0378-3839(86)90021-9
- Kirby, J.T. (1997). Nonlinear, dispersive long waves in water of variable depth, In Hunt, J. N.(Editor), Gravity waves in water of finite depth, Advances in fluid mechanics, Vol. 10, 55-125, Computational Mechanics Publications
- Kirby, J.T. and Dalrymple, R. A. (1984). Verification of a parabolic equation for propagation of weakly-nonlinear waves, Coastal Eng. 8, 212-232
- Kirby, J.T. and Dalrymple, R.A. (1986). Approximate model for nonlinear dispersion in monochromatic wave propagation, Coastal Eng., 9, 545-561 https://doi.org/10.1016/0378-3839(86)90003-7
- Luke, J.C. (1967). 'A variational principle for a fluid with a free surface', J. Fluid Mech., 27, 395-397 https://doi.org/10.1017/S0022112067000412
- Liu, P.L.-F. (1990). Wave transformation, In: B. LeMehaute, and D.M. Hanes(Editors), The Sea, Ocean Engineering Science Vol. 9, 27-63, Wiley, New York
- Liu, P.L.-F. (1994). Model equations for wave propagations from deep to shallow water, In: Liu, P.L.-F. (Editor), Advances in Coastal and Ocean Engineering, Vol. 1, 125-157, World Scientific Pub., Singapore
- Lozano, C.J. and P.L.-F. Liu, (1980). Refraction-diffraction model for linear surface water waves, J. Fluid Mech., 101, 705-720 https://doi.org/10.1017/S0022112080001887
- Massel, S.R. (1993). Extended refraction-diffraction equation for surface waves. Coastal Eng. 19, 97-126 https://doi.org/10.1016/0378-3839(93)90020-9
- Mei, C.C. (1989). The Applied Dynamics of Ocean Surface Waves. World Scientific, Singapore
- Mikhlin, S.G. (1964). Variational Methods in Mathematical Physics, Macmillan, New York
- Miles, J.W. (1977). On Hamilton's principle for surface waves, J. Fluid Mech., 83, 153-158 https://doi.org/10.1017/S0022112077001104
- Miles, J.W. and Chamberlain, P.G. (1998). 'Topographical scattering of gravity waves', J. Fluid Mech., 361, 175-188 https://doi.org/10.1017/S002211209800857X
- Radder, A.C. (1979). On the parabolic equation method for waterwave propagation, J. Fluid Mech., 95, 159-176 https://doi.org/10.1017/S0022112079001397
- Smith, R. and Sprinks, T. (1975). 'Scattering of surface waves by a conical island', J. Fluid Mech., 72, 373-384 https://doi.org/10.1017/S0022112075003424
- Suh, K.D., Lee, C. and Park, W.S. (1997). Time-dependent equations for wave propagation on rapidly varying topography, Coastal Eng. 32, 91-117 https://doi.org/10.1016/S0378-3839(97)81745-0