참고문헌
- Crammer, K., Singer, Y.: On the Leamability and Design of Output Codes for Multiclass Problems. Proc. of the 13th Annual Conference on Computational Learning Theory (2000) 35-46
- Drucker, H., Wu, D., Vapnik, V.N.: Support vector machines for spam categorization. IEEE Transactions on Neural Networks, 10(5) (1999) 1048-1054 https://doi.org/10.1109/72.788645
- Friedman, J.: Another Approach to Polychtomous Classfication. Technical Report, Stanford University (1996)
- Hsu, C-W, Lin, C.-J.: A Comparison of Methods for Multiclass Support Vector Machines. IEEE Transactions on Neural Networks 13(2) (2002) 415-425 https://doi.org/10.1109/72.991427
- Hsu, C-W., Lin, C.-J.: A Simple Decomposition Method for Support Vector Machines. Machine Learning 46 (2002) 291-314 https://doi.org/10.1023/A:1012427100071
- Huang, Z., Chen, H., Hsu, C-J., Chen, W-H., Wu, S.: Credit Rating Analysis with Support Vector Machines and Neural Networks: A Market Comparative Study. Decision Support Systems 27 (2004) 543-558
- Kressel, U.: Pairwise Classification and Support Vector Machines. In Scholkopf, B., Burges, C., Smola, A.J.: Advances in Kernal Methods: Support Vector Learning Chapter 15. MIT Press. Cambridge, MA (1999) 255-268
- Kwon, Y.S., Han, I., Lee, K.C.: Ordinal Pairwise Partitioning (OPP) Approach to Neural Networks Training in Bond Rating. Intelligent Systems in Accounting, Finance and Management 6 (1997) 23-40
- Mukherjee, S., Osuna, E., Girosi, F.: Nonlinear prediction of chaotic time series using support vector machines. Proc. of the IEEE Workshop on Neural Networks for Signal Processing (1997) 511-520
- Platt, J.C., Cristianini, N., Shawe-Taylor, J.: Large Margin DAG's for multiclass classification. In Solla, S.A., Leen, T.K., Muller, K.-R.: Advances in Neural Information Processing Systems 12. MIT Press. Cambridge, MA (2000) 547-553
- Shin, K.S., Han, I.: A Case-based Approach using Inductive Indexing for Corporate Bond Rating. Decision Support Systems 32 (2001) 41-52 https://doi.org/10.1016/S0167-9236(01)00099-9
- Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis. Bioinformatics 21(5) (2005) 631-543 https://doi.org/10.1093/bioinformatics/bti033
- Tay, F.E.H, Cao, L.J.: Application of Support Vector Machines in Financial Time Series Forecasting. Omega 29 (2001) 309-317 https://doi.org/10.1016/S0305-0483(01)00026-3
- Vapnik, V.: The Nature of Statistical Learning Theory. Springer- Verlag. New York (1995)
- Vapnik, V.N.: Statistical Learning Theory. Wiley. New York (1998)
- Weston, J., Watkins, C: Support Vector Machines for Multiclass Pattem Recognition. Proc. of the Seventh European Symposium on Artificial Neural Networks (1999) 219-224
- Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers. San Francisco, CA (2000)