INTUITIONISTIC FUZZY WEAK CONGRUENCES ON A SEMIRING

Kul Hur¹, Su Youn Jang² and Keon Chang Lee³

¹ Division of Mathematics and Informational Statis-tics, WonkwangUniversity, Iksan, Chonbuk, Korea 570-749.

Abstract

We introduce the concept of intuitionistic fuzzy weak congruence on a semiring and obtain the relation between intuitionistic fuzzy weak congruence and intuitionistic fuzzy ideal of a semiring. Also we define and investigate intuitionistic fuzzy quotient semiring of a semiring over an intuitionistic fuzzy ideal or over an intuitionistic fuzzy weak congruence.

Key words: semiring, (intuitionistic fuzzy weak) congruence, (intuitionistic fuzzy) ideal, (intuitionistic fuzzy) k-ideal, intuitionistic fuzzy quotient semiring

0. Introduction

The concept of fuzzy set was formulated by Zadeh [24]. Since then, there has been a remarkable growth of fuzzy set theory. The notion of fuzzy relation on a set was defined by Zadeh [25]. Some researchers [8,19,21-23] applied the concept of fuzzy sets to congruence theory. In particular, Dutta and Biswas [8] investigated fuzzy congruence and quotient semiring of a semiring.

In 1986, Atanassov [1] introduced the notion of intuitionistic fuzzy sets as the generalization of fuzzy sets. After that time, Çoker [6], Lee and Lee [20], and Hur and his colleagues [12] applied the notion of intuitionistic fuzzy sets to topology. Also, several researchers [2,3,9-11,14] applied the notion of intuitionistic fuzzy sets to algebra. In particular, Bustince and Burillo [5], and Deschrijver and Kerre [7] applied the concept of intuitionistic fuzzy sets to relation. Also, Hur and his colleagues [15] investigated several properties of intuitionistic fuzzy equivalence relations. Moreover, Hur and his colleagues [16,17,18] introduced the notion of intuitionistic fuzzy congruence on a lattice, on a semigroup and on a near-ring module, respectively, and studied some of their properties.

In this paper, we introduce the concept of intuitionistic fuzzy weak congruence on a semiring. And we obtain the relation between intuitionistic fuzzy weak congruence and intuitionistic fuzzy ideal of a semiring. Also, we define and investigate intuitionistic fuzzy quotient semiring of a semiring over an intuitionistic fuzzy ideal or over an intu-

itionistic fuzzy weak congruence.

1. Preliminaries

We recall some definitions and two results that are used in this paper.

For sets X,Y and $Z,f=(f_1,f_2):X\to Y\times Z$ is called a *complex mapping* if $f_1:X\to Y$ and $f_2:X\to Z$ are mappings.

Throughout this paper, we will denote the unit interval [0,1] as I and for any ordinary relation R on a set X, we will denote the characteristic mapping of R as χ_R .

Definition 1.1[1,6]. Let X be a nonempty set. A complex mapping $A=(\mu_A,\ \nu_A): X\to I\times I$ is called an *intuitionistic fuzzy set* (in short, *IFS*) in X if for each $x\in X$ $\mu_A(x)+\nu_A(x)\leq 1$, where the mappings $\mu_A:X\to I$ and $\nu_A:X\to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of nonmembership (namely $\nu_A(x)$) of each $x\in X$ to A, respectively. In particular, 0_\sim and 1_\sim denote the *intuitionistic fuzzy empty set* and the *intuitionistic fuzzy whole set* in X defined by $0_\sim(x)=(0,1)$ and $1_\sim(x)=(1,0)$ for each $x\in X$, respectively.

² Division of Mathematics and Informational Statis-tics, Wonkwang University, Iksan, Chonbuk, Korea 570-749.

Department of Computer Science, Dongshin Universuty, Naju, Chenmmam, Korea, 520-714

We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[1]. Let X be a nonempty set and let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IFSs in X. Then

- (1) $A \subset B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
- (2) A = B iff $A \subset B$ and $B \subset A$.
- (3) $A^c = (\nu_A, \mu_A)$.
- $(4) A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B).$
- $(5) A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B).$

Definition 1.3[6]. Let $\{A_i\}_{i\in J}$ be an arbitrary family of IFSs in X, where $A_i=(\mu_{A_i},\nu_{A_i})$ for each $i\in J$. Then

- (a) $\bigcap A_i = (\bigwedge \mu_{A_i}, \bigvee \nu_{A_i}).$
- (b) $\bigcup A_i = (\bigvee \mu_{A_i}, \bigwedge \nu_{A_i}).$

Definition 1.4[9]. Let A be an IFS in a set X and let $\lambda, \mu \in I$ with $\lambda + \mu \leq 1$. Then the set $A^{(\lambda,\mu)} = \{x \in X : \mu_A(x) \geq \lambda \text{ and } \nu_A(x) \leq \mu\}$ is called a (λ,μ) -level subset of A.

Result 1.A[11, Proposition 2.2]. Let A be an IFS in a set X and let $(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in \operatorname{Im} A$. If $\lambda_1 \leq \lambda_2$ and $\mu_1 \geq \mu_2$, then $A^{(\lambda_2, \mu_2)} \subset A^{(\lambda_1, \mu_1)}$.

Definition 1.5[5,7]. Let X be a set. Then a complex mapping $R=(\mu_R,\ \nu_R): X\times X\to I\times I$ is called an *intuitionistic fuzzy relation* (in short, *IFR*) on X if $\mu_R(x,y)+\nu_R(x,y)\leq 1$ for each $(x,y)\in X\times X$, i.e., $R\in \mathrm{IFS}\ (X\times X)$.

We will denote the set of all IFRs on a set X as IFR(X).

Definition 1.6[7] Let X be a set and let $R,Q \in IFR(X)$. Then the *composition* of R and $Q, Q \circ R$, is defined as follows: for any $x,y \in X$,

$$\mu_{Q \circ R}(x, y) = \bigvee_{z \in X} [\mu_R(x, z) \wedge \mu_Q(z, y)]$$

and

$$\nu_{Q \circ R}(x, y) = \bigwedge_{z \in X} [\nu_R(x, z) \vee \nu_Q(z, y)].$$

Definition 1.7[5,7]. An Intuitionistic fuzzy relation R on a set X is called an *intuitionistic fuzzy equivalence relation* (in short, IFER) on X if it satisfies the following conditions .

- (i) it is intuitionistic fuzzy reflexive, i.e., R(x, x) = (1, 0) for each $x \in X$.
- (ii) it is *intuitionistic fuzzy symmetric*, i.e., R(x,y) = R(y,x) for any $x,y \in X$.
- (iii) it is intuitionistic fuzzy transitive, i.e., $R \circ R \subset R$.

We will denote the set of all IFERs on X as IFE(X).

Let R be an intuitionistic fuzzy equivalence relation on a set X and let $a \in X$. We define a complex mapping $Ra: X \to I \times I$ as follows: for each $x \in X$

$$Ra(x) = R(a, x).$$

Then clearly $Ra \in IFS(X)$. The intuitionistic fuzzy set Ra in X is called an *intuitionistic fuzzy equivalence class* of R containing $a \in X$. The set $\{Ra : a \in X\}$ is called the *intuitionistic fuzzy quotient set of* X by R and denoted by X/R.

Definition 1.8[17]. An IFR R on a groupoid S is said to be:

- (1) intuitionistic fuzzy left compatible if $\mu_R(x,y) \le \mu_R(zx,zy)$ and $\nu_R(x,y) \ge \nu_R(zx,zy)$, for any $x,y,z \in S$.
- (2) intuitionistic fuzzy right compatible if $\mu_R(x,y) \le \mu_R(xz,yz)$ and $\nu_R(x,y) \ge \nu_R(xz,yz)$, for any $x,y,z \in S$
- (3) intuitionistic fuzzy compatible if $\mu_R(x,y) \land \mu_R(z,t) \leq \mu_R(xz,yt)$ and $\nu_R(x,y) \lor \nu_R(z,t) \geq \nu_R(xz,yt)$, for any $x,y,z,t \in S$.

Definition 1.9[17]. An IFER R on a groupoid S is called an:

- (1) *intuitionistic fuzzy left congruence* (in short, *IFLC*) if it is intuitionistic fuzzy left compatible.
- (2) intuitionistic fuzzy right congruence (in short, *IFRC*) if it is intuitionistic fuzzy right compatible.
- (3) *intuitionistic fuzzy congruence* (in short, *IFC*) if it is intuitionistic fuzzy compatible.

We will denote the set of all IFCs [resp. IFLCs and IFRCs] on a groupoid S as IFC(S) [resp. IFLC(S) and IFRC(S)].

Result 1.B[17, Theorem 2.8]. Let R be a relation on a groupoid S. Then R is a congruence on S if and only if $(\chi_R, \chi_{R^c}) \in IFC(S)$.

Let R be an intuitionistic fuzzy congruence on a semigroup S and let $a \in S$. The intuitionistic fuzzy set Ra in Sis called an *intuitionistic fuzzy congruence class of* R *con*taining $a \in S$ and we will denote the set of all intuitionistic fuzzy congruence classes of R as S/R.

2. Intuitionistic fuzzy weak congruences

Definition 2.1. Let S be a set and let $0_{\sim} \neq R \in IFR(X)$. Then R is called an *intuitionistic fuzzy weak equivalence relation* (in short, *IFWER*) on X if

(1) R is intuitionistic fuzzy weakly reflexive, i.e., for each x ∈ X, R(x,x) = (∀_{y,z∈X} μ_R(y,z), ∧_{y,z∈X} ν_R(y,z)).
(2) R is intuitionistic fuzzy symmetric, i.e., R(x,y) = R(y,x) for any x, y ∈ X.
(3) R is intuitionistic fuzzy transitive, i.e., R ∘ R ⊂ R.

We will denote the set of all IFWERs on X as $IFE_W(X)$.

Proposition 2.2. Let X be a set and let $\{R_{\alpha}\}_{{\alpha}\in\Gamma}$ be a nonempty set of intuitionistic fuzzy weakly reflexive relation on X. Then $\bigcap_{{\alpha}\in\Gamma}R_{\alpha}$ is intuitionistic fuzzy weakly reflexive.

Proof. Let
$$R = \bigcap_{\alpha \in \Gamma} R_{\alpha}$$
 and let $x \in X$. Then
$$\mu_R(x,x) = \bigwedge_{\alpha \in \Gamma} \mu_{R_{\alpha}}(x,x)$$

$$= \bigwedge_{\alpha \in \Gamma} [\bigvee_{y,z \in X} \mu_{R_{\alpha}}(y,z)]$$

$$= \bigvee_{y,z \in X} [\bigwedge_{\alpha \in \Gamma} \mu_{R_{\alpha}}(y,z)]$$
and
$$\nu_R(x,x) = \bigvee_{\alpha \in \Gamma} \nu_{R_{\alpha}}(x,x)$$

$$= \bigvee_{\alpha \in \Gamma} [\bigwedge_{y,z \in X} \nu_{R_{\alpha}}(y,z)]$$

$$= \bigwedge_{y,z \in X} [\bigvee_{\alpha \in \Gamma} \nu_{R_{\alpha}}(y,z)]$$

$$= \bigwedge_{y,z \in X} \nu_{R}(y,z).$$
Hence R is intriction for example, and a variety R

Hence R is intuitionistic fuzzy weakly reflexive.

Definition 2.3[4]. A *semiring* is defined by an algebra $(S,+,\cdot)$ such that (S,+) and (S,\cdot) are semigroup connected by a(b+c)=ab+ac and (b+c)a=ba+ca for any $a,b,c\in S$. A semiring may have an identity 1 defined by 1a=a1=a and a zero (which is an absorbing zero also) 0 defined by a+0=0+a=a and a0=0a=0 for each $a\in S$. A semiring S is said to be *additively commutative* if (S,+) is commutative and *multiplicatively commutative* if (S,+) is commutative.

Definition 2.4. Let S be a semiring and let $R \in IFR(S)$. Then R is said to be:

(1) intuitionistic fuzzy left compatible if for any $a,b,t\in S,$ $\mu_R(t+a,t+b)\geq \mu_R(a,b),$ $\nu_R(t+a,t+b)\leq \nu_R(a,b)$ and $\mu_R(ta,tb)\geq \mu_R(a,b),$ $\nu_R(ta,tb)\leq \nu_R(a,b).$ (2) intuitionistic fuzzy right compatible if for any $a,b,t\in S,$ $\mu_R(a+t,b+t)\geq \mu_R(a,b),$ $\nu_R(a+t,b+t)\leq \nu_R(a,b)$ and $\mu_R(at,bt)\geq \mu_R(a,b),$

 $\nu_R(at,bt) \le \nu_R(a,b).$

(3) *intuitionistic fuzzy compatible* if it is both intuitionistic fuzzy left compatible and intuitionistic fuzzy right compatible.

The following is the immediate result of Definitions 2.3 and 2.4.

Proposition 2.5. Let S be a semiring and let $R \in IFR(S)$. Then R is intuitionistic fuzzy compatible if and only if for any $a, b, c, d \in S$,

$$\begin{split} \mu_R(a+c,b+d) &\geq \mu_R(a,b) \wedge \mu_R(c,d), \\ \nu_R(a+c,b+d) &\leq \nu_R(a,b) \vee \nu_R(c,d) \\ \text{and} \\ \mu_R(ac,bd) &\geq \mu_R(a,b) \wedge \mu_R(c,d), \\ \nu_R(ac,bd) &\leq \nu_R(a,b) \vee \nu_R(c,d). \end{split}$$

Definition 2.6. Let S be a semiring and let $R \in IFR(S)$. Then R is called:

- (1) an *intuitionistic fuzzy congruence* (in short, *IFC*) on S if $R \in IFE(S)$ and R is intuitionistic fuzzy compatible.
- (2) an intuitionistic fuzzy weak congruence (in short, IFWC) on S if $R \in IFE_W(S)$ and R is intuitionistic fuzzy compatible.

We will denote the set of all IFCs [resp. IFWCs on S as IFC(S) [resp. IFC $_W(S)$]. It is clear that IFC $(S) \subset$ IFC $_W(S)$.

Example 2.7. Let $\mathbf N$ be the additively commutative semiring of all nonnegative integers with respect to the usual addition and multiplication. Then $\mathbf N$ contains zero which is absorbing. We define a complex mapping $R=(\mu_R,\nu_R):\mathbf N\times\mathbf N\to I\times I$ as follows: for any $x,y\in\mathbf N$,

$$R(x,y) = \begin{cases} (1,0) & \text{if } x = y, \\ (0.5,0.4) & \text{if } x \neq y \text{ and both } x,y \text{ are even or both } x,y \text{ are odd,} \\ (0,1) & \text{otherwise.} \end{cases}$$

Then it can be easily verified $R \in IFC(\mathbf{N})$.

The following is the immediate result of Propositions 2.2 and 2.5 and Definition 2.6.

Proposition 2.8. Let S be a semiring and let $\{R_{\alpha}\}_{{\alpha}\in\Gamma}$ be a nonempty subset of IFC(S) [resp. $IFC_W(S)$]. Then $\bigcap_{{\alpha}\in\Gamma}R_{\alpha}\in IFC(S)$ [resp. $IFC_W(S)$].

The following is the similar result as Result 1.B.

Theorem 2.9. Let R be a relation on a semiring S. Then R is a congruence on S if and only if $(\chi_R, \chi_{R^c}) \in IFC(S) \cap IFC_W(S)$.

Hur and his colleagues in Proposition 2.13 of [17] proved that if R is an IFC on a groupoid S, then for each

 $(\lambda,\mu) \in I \times I$, $R^{(\lambda,\mu)}$ is a congruence on S. But our definition of intuitionistic fuzzy weak reflexivity enables as to establish both necessary and sufficient condition of the Theorem which is as follows.

Theorem 2.10. Let S be a semiring and let $R \in IFR(S)$. Then $R \in IFC_W(S)$ if and only if $R^{(\lambda,\mu)}$ is a congruence on S for each $(\lambda,\mu) \in ImR$.

Definition 2.11. Let A be a nonempty intuitionistic fuzzy set in a semiring S. Then A is called an *intuitionistic fuzzy ideal* (in short, *IFI*) of S if it satisfies the following conditions: For any $x, y \in S$,

(i)
$$\mu_A(x+y) \geq \mu_A(x) \wedge \mu_A(y)$$

and $\nu_A(x+y) \leq \nu_A(x) \vee \nu_A(y)$,
(ii) $\mu_A(xy) \geq \mu_A(y)$ and $\nu_A(xy) \leq \nu_A(y)$,
(iii) $\mu_A(xy) \geq \mu_A(x)$ and $\nu_A(xy) \leq \nu_A(x)$.

It is clear that $\mu_A(0) \ge \mu_A(x)$ and $\nu_A(0) \le \nu_A(x)$ for each $x \in S$. We will denote the set of all IFI_S of S as IFI(S).

A k-ideal J of a semiring S is an ideal such that if $a \in J$ and $x \in S$ and x + a or $a + x \in J$, then $x \in J$ (See [4]).

Definition 2.12. Let S be a semiring and let $A \in IFI(S)$. Then A is called an *intuitionistic fuzzy k-ideal* (in short, *IFKI*) of S if for any $x, y \in S$,

$$\mu_A(x) \ge [\mu_A(x+y) \lor \mu_A(y+x)] \land \mu_A(y)$$

 $\nu_A(x) \leq [\nu_A(x+y) \wedge \nu_A(y+x)] \vee \nu_A(y).$ If S is additively commutative, then the condition reduces

 $\mu_A(x) \ge \mu_A(x+y) \wedge \mu_A(y)$

and

 $\nu_A(x) \leq \nu_A(x+y) \vee \nu_A(y)$ for any $x,y \in S$.

We will denote the set of all IFKIs of S as IFKI(S).

Proposition 2.13. Let S be a semiring and let $0_{\sim} \neq A \in IFS(X)$. Then $A \in IFKI(S)$ [resp. IFI(S)] if and only if $A^{(\lambda,\mu)}$ is a k-ideal [resp. an ideal] of S for each $(\lambda,\mu) \in ImA$.

Proof. (i) (\Rightarrow) : Suppose $A \in \operatorname{IFI}(S)$ and let $(\lambda, \mu) \in \operatorname{Im}A$. Let $a, b \in A^{(\lambda, \mu)}$ and let $x \in S$. Then $\mu_A(a) \geq \lambda$, $\nu_A(a) \leq \mu$ and $\mu_A(b) \geq \lambda$, $\nu_A(b) \leq \mu$. Thus $\mu_A(a+b) \geq \mu_a(a) \wedge \mu_A(b) \geq \lambda \wedge \lambda = \lambda$

 $\begin{array}{c} \nu_A(a+b) \leq \nu_a(a) \vee \nu_A(b) \leq \mu \vee \mu = \mu. \\ \text{So } a+b \in A^{(\lambda,\mu)}. \text{ On the other hand, } \mu_A(xa) \geq \mu_a(a) \geq \lambda \text{ and } \nu_A(xa) \leq \nu_a(a) \leq \mu. \text{ Thus } xa \in A^{(\lambda,\mu)}. \text{ Similarly,} \\ \text{we have } ax \in A^{(\lambda,\mu)}. \text{ Hence } A^{(\lambda,\mu)} \text{ is an ideal of } S. \end{array}$

 $(\Leftarrow): \text{Suppose } A^{(\lambda,\mu)} \text{ is an ideal of } S \text{ for each } (\lambda,\mu) \in \text{Im} A. \quad \text{For any } x,y \in S, \text{ let } A(x) = (\lambda_1,\mu_1) \text{ and } A(y) = (\lambda_2,\mu_2) \text{ such that } \lambda_1 < \lambda_2 \text{ and } \mu_1 > \mu_2.$ Then clearly $x \in A^{(\lambda_1,\mu_1)}$ and $y \in A^{(\lambda_2,\mu_2)}$. Since $A^{(\lambda_2,\mu_2)} \subset A^{(\lambda_1,\mu_1)}$, $y \in A^{(\lambda_1,\mu_1)}$. Since $A^{(\lambda_1,\mu_1)}$ is an ideal of $S, x+y \in A^{(\lambda_1,\mu_1)}$, and $xy \in A^{(\lambda_1,\mu_1)}$ and $yx \in A^{(\lambda_1,\mu_1)}$. Then

$$\begin{split} \mu_A(x+y) & \geq \lambda_1 = \lambda_1 \wedge \lambda_2 = \mu_A(x) \wedge \mu_A(y), \\ \nu_A(x+y) & \leq \nu_1 = \nu_1 \vee \nu_2 = \nu_A(x) \vee \nu_A(y), \\ \mu_A(xy) & \geq \lambda_1 = \mu_A(x), \ \nu_A(xy) \leq \mu_1 = \nu_A(x), \\ \mu_A(yx) & \geq \lambda_1 = \mu_A(x), \ \nu_A(yx) \leq \mu_1 = \nu_A(x). \end{split}$$
 Hence $A \in \mathrm{IFI}(S)$.

(ii) (\Rightarrow) : Suppose $A \in IFKI(S)$ and let $(\lambda, \mu) \in ImA$. Then, by (i), A is an ideal of S. For each $a \in A^{(\lambda,\mu)}$ and each $x \in S$, suppose $x + a \in A^{(\lambda,\mu)}$ or $a + x \in A^{(\lambda,\mu)}$. Then $\mu_A(x+a) \geq \lambda$, $\nu_A(x+a) \leq \mu$ or $\mu_A(a+x) \geq \lambda$, $\nu_A(a+x) \leq \mu$. Since $A \in IFKI(S)$,

 $\mu_A(x) \ge [\mu_A(a+x) \lor \mu_A(x+a)] \land \mu_A(a) \ge \lambda$

and

 $\nu_A(x) \leq \left[\nu_A(a+x) \wedge \nu_A(x+a)\right] \vee \nu_A(a) \leq \mu.$ Thus $x \in A^{(\lambda,\mu)}$. Hence $A^{(\lambda,\mu)}$ is a k-ideal of S.

 $(\Leftarrow): \text{ Suppose } A^{(\lambda,\mu)} \text{ is a k-ideal of S for each } (\lambda,\mu) \in \text{Im}A. \quad \text{Then, by (i), } A \in \text{IFI}(S). \quad \text{For any } x,y \in S, \text{ let } A(x) = (\lambda_1,\mu_1) \text{ and } A(y) = (\lambda_2,\mu_2) \text{ such that } \lambda_1 < \lambda_2 \text{ and } \mu_1 > \mu_2. \quad \text{Then } x \in A^{(\lambda_1,\mu_1)} \text{ and } y \in A^{(\lambda_2,\mu_2)}. \quad \text{By Result 1.A, since } A^{(\lambda_2,\mu_2)} \subset A^{(\lambda_1,\mu_1)}, y \in A^{(\lambda_1,\mu_1)}. \quad \text{Thus } x+y \in A^{(\lambda_1,\mu_1)} \text{ and } y+x \in A^{(\lambda,\mu)}. \quad \text{So } [\mu_A(x+y) \vee \mu_A(y+x)] \wedge \mu_A(y) \geq (\lambda_1 \vee \lambda_1) \wedge \lambda_1 = \lambda_1. \quad \Box$

Proposition 2.14. Let S be a semiring with zero 0 and let $R \in IFC_W(S)$. We define a complex mapping $A_R = (\mu_{A_R}, \nu_{A_R}) : S \to I \times I$ as follows: for each $a \in S$,

$$A_R(a) = R(a,0).$$

Then $A_R \in IFKI(S)$. In this case, A_R is called the *intuitionistic fuzzy k-ideal induced by R*.

$$\begin{aligned} & \textbf{Proof.} \ A_R(0) = R(0,0) \\ & = (\bigvee_{x,y \in S} \mu_R(x,y), \bigwedge_{x,y \in S} \nu_R(x,y)) \\ & \neq (0,1) \text{ since } R \neq 0_{\sim}. \end{aligned}$$
 Then $A_R \neq 0_{\sim}$. Let $a,b \in S$. Then $\mu_{A_R}(a+b) = \mu_R(a+b,0)$ $& \geq \mu_R(a,0) \wedge \mu_R(b,0)$ (Since $R \in \text{IFC}_W(S)$) $& = \mu_{A_R}(a) \wedge \mu A_R(b)$ and $\nu_{A_R}(a+b) = \mu_R(a+b,0)$ $& \leq \nu_R(a,0) \vee \nu_R(b,0)$ $& \leq \nu_{A_R}(a) \vee \nu A_R(b).$ Also, $\mu_{A_R}(ab) = \mu_R(ab,0)$ $& \geq \mu_R(a,0) \wedge \mu_R(b,0)$ $& \geq \mu_R(a,0) \wedge \mu_R(b,0)$ (Since $R \in \text{IFC}_W(S)$)

$$=\mu_R(b,0)$$

$$=\mu A_R(b)$$
and
$$\nu_{A_R}(ab) = \nu_R(ab,0)$$

$$\leq \nu_R(a,0) \vee \nu_R(b,0)$$

$$= \nu_A(b).$$
Similarly, we have $\mu_{A_R}(ab) \geq \mu_{A_R}(a)$ and $\nu_{A_R}(ab) \leq \nu_{A_R}(a)$. So $A_R \in \mathrm{IFI}(S)$. On the other hand,
$$\mu_{A_R}(a) = \mu_R(a,0)$$

$$\geq \bigvee_{x \in S} [\mu_R(a,x) \wedge \mu_R(x,0)]$$
(Since $R \circ R \subset R$)
$$\geq \mu_R(a,a+b) \wedge \mu_R(a+b,0)$$

$$\geq [\mu_R(a,a) \wedge \mu_R(0,b)] \wedge \mu_R(a+b,0)$$
(Since R is intuitionistic fuzzy compatible)
$$= \mu_R(0,b) \wedge \mu_R(a+b,0)$$

$$= \mu_R(a+b,0) \wedge \mu_R(b,0)$$

$$= \mu_{A_R}(a+b) \wedge \mu_{A_R}(b)$$
and
$$\nu_{A_R}(a) = \nu_R(a,0)$$

$$\leq \bigwedge_{x \in S} [\nu_R(a,x) \vee \nu_R(x,0)]$$

$$\leq \nu_R(a,a+b) \vee \nu_R(a+b,0)$$

 $\leq \nu_R(a, a+b) \vee \nu_R(a+b, 0)$ $\leq [\nu_R(a,a) \vee \nu_R(0,b)] \vee \nu_R(a+b,0)$ $= \nu_R(0,b) \vee \nu_R(a+b,0)$ $= \nu_R(a+b,0) \vee \nu_R(b,0)$ $= \nu_{A_R}(a+b) \vee \nu_{A_R}(b).$

Hence $A_R \in IFKI(S)$. This completes the proof.

Proposition 2.15. Let S be a semiring with zero 0 and let $A \in IFI(S)$. We define a complex mapping $R_A =$ $(\mu_{R_A}, \nu_{R_A}): S \times S \rightarrow I \times I$ as follows: for each $(x,y) \in S \times S$,

$$R_A(x,y) = (\bigvee_{\substack{x+a=y+b \\ a,b\in S}} [\mu_A(a) \wedge \mu_A(b)],$$
$$\bigwedge_{\substack{x+a=y+b \\ a,b\in S}} [\nu_A(a) \vee \nu_A(b)]).$$

Then $R_A \in IFWC(S)$. In this case R_A is called the *intu*itionistic fuzzy weak congruence induced by A.

Proof. Since $A \neq 0_{\sim}$, it is clear that $R_A \neq 0_{\sim}$. Let $x \in X$.

$$\mu_{R_A}(x,x) = \bigvee_{\substack{x+a=y+b \\ a,b \in S}} \left[\mu_A(a) \wedge \mu_A(b) \right]$$

$$\geq \mu_A(a) \wedge \mu_A(0)$$
(Since $x+0=x+0$)
$$\geq \mu_A(u) \wedge \mu_A(v)$$
for any $u,v \in S$ (2.1)

$$\begin{array}{l} \nu_{R_A}(x,y) = \bigwedge_{\substack{x+a=y+b \\ a,b\in S}} [\nu_A(a) \vee \nu_A(b)] \\ \leq \nu_A(a) \vee \nu_A(0) \\ \leq \nu_A(u) \vee \nu_A(v) \\ \text{for any } u,v \in S. \end{array} \tag{2.2}$$

Since $\mu_{R_A}(y,z) = \bigvee_{\substack{x+u=y+v \ u,v \in S}} [\mu_A(u) \wedge \mu_A(v)]$ and $\nu_{R_A}(y,z) \ = \ \bigwedge{}_{\substack{x+u=y+v\\u,v\in S}} [\nu_A(u) \lor \nu_A(v)] \ \text{ for any } y,z \ \in$ $S, \text{ by } (2.1) \text{ and } (2.2), \ \mu_{R_A}(x,x) \geq \mu_{R_A}(y,z) \text{ and }$ $\nu_{R_A}(x,x) \leq \nu_{R_A}(y,z)$ for any $y,z \in S$. So $\mu_{R_A}(x,x) \geq$

 $\bigvee_{y,z\in S} \mu_{R_A}(y,z)$ and $\nu_{R_A}(x,x) \le \bigwedge_{y,z\in S} \nu_{R_A}(y,z)$, i.e., $R_A(x,x) = (\bigvee_{y,z \in S} \mu_{R_A}(y,z), \bigwedge_{y,z \in S} \nu_{R_A}(y,z)).$ Hence R_A is intuitionistic fuzzy weakly reflexive. It is clear that R_A is intuitionistic fuzzy symmetric. Now let $x, y \in S$. Then

$$\mu_{R_A}(x,y) = \bigvee_{\substack{x+a=y+b \\ a,b\in S}} \left[\mu_A(a) \wedge \mu_A(b)\right]$$

$$\geq \bigvee_{\substack{x+a=z+c \\ a,c\in S}} \bigvee_{\substack{z+c=y+b \\ b,c\in S}} \left[\left(\mu_A(a) \wedge \mu_A(c)\right)\right]$$

$$= \left(\bigvee_{\substack{x+a=z+c \\ a,c\in S}} \left[\mu_A(a) \wedge \mu_A(c)\right]\right)$$

$$\wedge \left(\bigvee_{\substack{z+c=y+b \\ b,c\in S}} \left[\mu_A(c) \wedge \mu_A(b)\right]\right)$$

$$= \mu_{R_A}(x,z) \wedge \mu_{R_A}(z,y)$$
and
$$\nu_{R_A}(x,y)$$

$$= \bigwedge_{\substack{x+a=y+b \\ a,b\in S}} \left[\nu_A(a) \vee \nu_A(b)\right]$$

$$\leq \bigwedge_{\substack{x+a=z+c \\ a,c\in S}} \bigwedge_{\substack{z+c=y+b \\ b,c\in S}} \left[\left(\nu_A(a) \vee \nu_A(c)\right)\right]$$

$$\vee \left(\nu_A(c) \vee \nu_A(b)\right)$$

 $= \left(\bigwedge_{\substack{x+a=z+c \\ a,c \in S}} \left[\nu_A(a) \vee \nu_A(c) \right] \right)$ $\vee \left(\bigwedge_{\substack{z+c=y+b \\ b,c \in S}} \left[\nu_A(c) \vee \nu_A(b) \right] \right)$ $= \nu_{R_A}(x,z) \vee \nu_{R_A}(z,y).$

$$\begin{array}{l} \mu_{R_A}(x,y) \geq \bigvee_{z \in S} [\mu_{R_A}(x,z) \wedge \mu_{R_A}(z,y)] \\ = \mu_{R_A \circ R_A}(x,y) \end{array}$$

and

$$\begin{array}{l} \nu_{R_A}(x,y) \leq \bigwedge_{z \in S} [\nu_{R_A}(x,z) \vee \nu_{R_A}(z,y)] \\ = \nu_{R_A \circ R_A}(x,y). \end{array}$$

So R_A is intuitionistic fuzzy transitive. Hence $R_A \in$ $IFE_W(S)$.

Now let $a, b, c, d \in S$. Let $\mu_{R_A}(a, b) > \mu_{R_A}(c, d)$ and $\nu_{R_A}(a,b) < \nu_{R_A}(c,d)$. Suppose $\mu_{R_A}(a+c,b+d) \geq$ $\mu_{R_A}(a,b)$ and $\nu_{R_A}(a+c,b+d) \leq \nu_{R_A}(a,b)$. Then clearly $\mu_{R_A}(a+c,b+d) > \mu_{R_A}(a,b) \wedge \mu_{R_A}(c,d)$ and $\nu_{R_A}(a+c,b+d) \ < \ \nu_{R_A}(a,b) \ \lor \ \nu_{R_A}(c,d).$ Suppose $\mu_{R_A}(a+c,b+d) > \mu_{R_A}(a,b)$ and $\nu_{R_A}(a+c,b+d) < 0$ $\nu_{R_A}(a,b)$. Then there exist $u,v\in S$ such that a+u=b+v

$$\begin{array}{l} \mu_{R_A}(a+c,b+d) > \mu_A(u) \wedge \mu_A(v), \\ \nu_{R_A}(a+c,b+d) < \nu_A(u) \vee \nu_A(v). \end{array} \tag{2.3} \\ \text{Let } u,v \in S \text{ such that } c+u_1=d+v_1. \text{ Then } \\ \mu_{R_A}(a+c,b+d) \\ \geq \mu_A(u+u_1) \wedge \mu_A(v+v_1) \\ \text{ (Since } a+c+u+u_1=b+d+v+v_1) \\ \geq \mu_A(u) \wedge \mu_A(u_1) \wedge \mu_A(v) + \mu_A(v_1) \\ = \left[\mu_A(u) \wedge \mu_A(v)\right] \wedge \left[\mu_A(u_1) \wedge \mu_A(v_1)\right] \\ \text{and} \\ \nu_{R_A}(a+c,b+d) \\ \leq \nu_A(u+u_1) \vee \nu_A(v+v_1) \\ \leq \nu_A(u) \vee \nu_A(u_1) \vee \nu_A(v) + \nu_A(v_1) \\ = \left[\nu_A(u) \vee \nu_A(v_1)\right] \vee \left[\nu_A(u_1) \vee \nu_A(v_1)\right]. \\ \text{By } (2.3), \mu_{R_A}(a+c,b+d) \geq \mu_A(u_1) \wedge \mu_A(v_1), \nu_{R_A}(a+c,b+d) \leq \nu_A(u_1) \vee \nu_A(v_1). \end{array}$$

Thus

$$\begin{array}{l} \mu_{R_A}(a+c,b+d) \\ \geq \bigvee_{c+u_1=d+v_1}[\mu_A(u_1)\wedge\mu_A(v_1)] \\ = \mu_{R_A}(c,d) \\ = \mu_{R_A}(a,b)\wedge\mu_{R_A}(c,d) \\ \text{and} \\ \nu_{R_A}(a+c,b+d) \\ \leq \bigwedge_{c+u_1=d+v_1}[\nu_A(u_1)\vee\nu_A(v_1)] \\ = \nu_{R_A}(c,d) \\ = \nu_{R_A}(a,b)\vee\nu_{R_A}(c,d). \\ \text{Let } R_A(a,b) = R_A(c,d). \text{ Then we can show that:} \\ \mu_{R_A}(a+c,b+d) \geq \mu_{R_A}(a,b)\wedge\mu_{R_A}(c,d) \\ \text{and} \\ \nu_{R_A}(a+c,b+d) \leq \nu_{R_A}(a,b)\vee\nu_{R_A}(c,d). \\ \text{By the similar arguments, we can see that:} \\ \mu_{R_A}(ac,bd) \geq \mu_{R_A}(a,b)\wedge\mu_{R_A}(c,d) \\ \text{and} \\ \nu_{R_A}(ac,bd) \leq \nu_{R_A}(a,b)\vee\nu_{R_A}(c,d). \\ \text{Thus } R_A \text{ is intuitionistic fuzzy compatible. Hence } R_A \in \text{IFC}_W(S). \text{ This is completes the proof.} \\ \hline \\ \textbf{Corollary 2.16. In Proposition 2.15, if } A \in \text{IFKI}(S), \text{ then } R_A \text{ is the smallest intuitionistic fuzzy weak congruence on } S \text{ such that } R_A(x,0) = A(x). \\ \hline \\ \textbf{Proof. Suppose } A \in \text{IFKI}(S). \text{ Let } a,b \in S \text{ such that } x+a=0+b. \text{ Then } \\ \mu_A(a)\wedge\mu_A(b)=\mu_A(a)\wedge\mu_A(x+a) \\ \leq \mu_A(x) \text{ (Since } A \in \text{IFKI}(S)) \\ \text{and} \\ \nu_A(a) \vee \nu_A(b)=\nu_A(a)\vee\nu_A(x+a) \\ \geq \nu_A(x). \\ \hline \\ \text{Thus} \\ \mu_{R_A}(x,0)=\bigvee_{\substack{c+a=0+b\\a,b\in S}}[\mu_A(a)\wedge\mu_A(b)] \\ \leq \nu_A(x). \\ \text{On the other hand,} \\ \mu_{R_A}(x,0)=\bigvee_{\substack{c+a=0+b\\a,b\in S}}[\mu_A(a)\wedge\mu_A(b)] \\ \geq \nu_A(x). \\ \hline \\ \text{On the other hand,} \\ \mu_{R_A}(x,0)=\bigvee_{\substack{c+a=0+b\\a,b\in S}}[\mu_A(a)\wedge\mu_A(b)] \\ \leq \nu_A(x) \vee \nu_A(0) \\ = \nu_A(x) \\ \text{and} \\ \nu_{R_A}(x,0)=\bigwedge_{\substack{c+a=0+b\\a,b\in S}}[\nu_A(a)\vee\nu_A(b)] \\ \leq \nu_A(x) \vee \nu_A(0) \\ = \nu_A(x) \\ \hline \\ \text{So } R_A(x,0)=A(x). \\ \text{Let } Q \in \text{IFC}_W(S) \text{ such that } Q(x,0)=A(x). \text{ Let } Q(x,y) \in S \times S \text{ and let } x+a=y+b,a,b\in S. \text{ Then } \\ \mu_Q(x,y)\geq \mu_Q(x,x+a)\wedge\mu_Q(x+a,y) \\ \text{ (Since } Q \text{ is intuitionistic fuzzy transitive)} \\ \geq \mu_Q(x,x)\wedge\mu_Q(0,a)\wedge\mu_Q(y+b,y) \\ \\ \text{(Since } Q \text{ is intuitionistic fuzzy transitive)} \\ \geq \mu_Q(x,x)\wedge\mu_Q(0,a)\wedge\mu_Q(y+b,y) \\ \\ \end{array}$$

(Since Q is intuitionistic fuzzy transitive)

 $\geq \mu_Q(0,a) \wedge \mu_Q(b,0)$

```
(\text{Since }Q\text{ is intuitionistic fuzzy transitive})\\ = \mu_Q(a,0) \wedge \mu_Q(b,0)\\ (\text{Since }Q\text{ is intuitionistic fuzzy transitive})\\ = \mu_A(a) \wedge \mu_A(b)\\ \text{and}\\ \nu_Q(x,y) \leq \nu_Q(x,x+a) \vee \nu_Q(x+a,y)\\ \leq \nu_Q(x,x) \vee \nu_Q(0,a) \vee \nu_Q(y+b,y)\\ \leq \nu_Q(0,a) \vee \nu_Q(b,0)\\ = \nu_Q(a,0) \vee \nu_Q(b,0)\\ = \nu_A(a) \vee \nu_A(b).\\ \text{Thus}\\ \mu_Q(x,y) \geq \bigvee_{\substack{x+a=y+b\\a,b\in S}} \left[\mu_A(a) \wedge \mu_A(b)\right]\\ = \mu_{R_A}(x,y)\\ \text{and}
```

 $\nu_Q(x,y) \le \bigwedge_{\substack{x+a=y+b\\a,b \in S}} \left[\nu_A(a) \lor \nu_A(b)\right]$ = $\nu_{R_A}(x,y)$.

So $R_A \subset Q$. Hence R_A is the smallest intuitionistic fuzzy weak congruence on S such that $R_A(x,0) = A(x)$ for each $x \in S$. This completes the proof.

Theorem 2.17. Let S be a semiring with zero 0. Then, there exists an inclusion preserving injection from IFKI(S) to $IFC_W(S)$.

Proof. We define a mapping $f: IFC_W(S) \to IFKI(S)$ and a mapping $g: IFKI(S) \to IFC_W(S)$ as follows, respectively: for each $R \in IFC_W(S)$ and each $A \in IFKI(S)$,

$$f(R) = A_R$$
 and $g(A) = R_A$.

Then, by Proposition 2.15 and Corollary 2.16, f and g are will-defined. Moreover, $(f \circ g)(A) = f(g(A)) = f(R_A) = A_{R_A}$ for each $A \in \operatorname{IFKI}(S)$ and $A_{R_A}(a) = R_A(a,0) = A(a)$ for each $a \in S$. Thus $(f \circ g)(A) = A = id_{\operatorname{IFKI}(S)}(A)$ for each $A \in \operatorname{IFKI}(S)$. So g is injective. Now let $A, B \in \operatorname{IFKI}(S)$ such that $A \subset B$ and let $x, y \in S$. Then

$$\mu_{R_B}(x,y) = \bigvee_{\substack{x+a=y+b \ a,b \in S}} [\mu_B(a) \wedge \mu_B(b)]$$

$$\geq \mu_B(a) \wedge \mu_B(b)$$

$$\geq \mu_A(a) \wedge \mu_B(b)$$

and

$$\nu_{R_B}(x,y) = \bigwedge_{\substack{x+a=y+b \ a,b \in S}} [\nu_B(a) \vee \nu_B(b)]$$

$$\leq \nu_B(a) \vee \nu_B(b)$$

$$\leq \nu_A(a) \vee \nu_B(b).$$

Thus

$$\mu_{R_B}(x,y) = \bigvee_{\substack{x+a=y+b \\ a,b \in S}} \left[\mu_A(a) \wedge \mu_A(b) \right]$$
$$= \mu_{R_A}(x,y)$$

and

$$\nu_{R_B}(x,y) = \bigwedge_{\substack{x+a=y+b\\a,b\in S}} \left[\nu_A(a) \vee \nu_A(b)\right]$$
$$= \nu_{R_A}(x,y).$$

So $R_A \subset R_B$, i.e., $g(A) \subset g(B)$. Hence g is an inclusion preserving injection. This completes the proof.

326

Proposition 2.18. Let S be a semiring with zero 0. Let $R \in \mathrm{IFC}_W(S)$ and let A_R be the intuitionistic fuzy k-ideal induced by R. Then $A_R^{(\lambda,\mu)} = \{x \in S : x \equiv 0(R^{(\lambda,\mu)})\}$ for each $(\lambda,\mu) \in \mathrm{Im} R$.

Proof. Let
$$(\lambda,\mu) \in I \times I$$
 and let $a \in S$. Then $a \in A_R^{(\lambda,\mu)}$ if and only if $\mu_{A_R}(a) \geq \lambda$ and $\nu_{A_R}(a) \leq \mu$ if and only if $\mu_R(a,0) \geq \lambda$ and $\nu_R(a,0) \leq \mu$ if and only if $(a,0) \in R^{(\lambda,\mu)}$ if and only if $a \equiv 0(R^{(\lambda,\mu)})$ if and only if $a \in \{x \in S : x \equiv 0(R^{(\lambda,\mu)})\}$.

Definition 2.19[9]. Let A be an intuitionistic fuzzy set in a semigroup S. Then A is said to have the *sup-property* if for any subset T of S, there exists $t_0 \in T$ such that $A(t_0) = \bigcup_{t \in T} A(t)$, i.e., $\mu_A(t_0) = \bigvee_{t \in T} \mu_A(t)$ and $\nu_A(t_0) = \bigwedge_{t \in T} \nu_A(t)$.

Proposition 2.20. Let S be a semigroup and let $A \in IFKI(S)$. Let R_A be the intuitionistic fuzzy weak congruence on S induced by A. If R has the sup-property, then $R_A^{(\lambda,\mu)}$ is a congruence on S induced by $A^{(\lambda,\mu)}$ for each $(\lambda,\mu) \in ImA$.

Proof. Let $(\lambda,\mu)\in {\rm Im}A$ and let Q be the congruence on S induced by $A^{(\lambda,\mu)}$, i.e., $(x,y)\in Q$ if and only if there exist $i_1,i_2\in A^{(\lambda,\mu)}$ such that $x+i_1=y+i_2$ (See p.908 in [4]). Let $(x,y)\in R_A^{(\lambda,\mu)}$. Since A has the sup-property, there exist $a_1,a_2\in S$ such that $x+a_1=y+b_1$, and

$$\mu_{R_A}(x,y) = \bigvee_{\substack{x+a=y+b \ a,b \in S}} \left[\mu_A(a) \wedge \mu_A(b) \right]$$
$$= \mu_A(a_1) \wedge \mu_A(b_1)$$
$$\geq \lambda$$

and

$$\begin{array}{l} \nu_{R_A}(x,y) = \bigwedge_{\stackrel{x+a=y+b}{a,b\in S}} [\nu_A(a) \vee \nu_A(b)] \\ = \nu_A(a_1) \vee \nu_A(b_1) \\ < \mu \end{array}$$

Then $\mu_A(a_1) \geq \lambda$, $\nu_A(a_1) \leq \mu$ and $\mu_A(b_1) \geq \lambda$, $\nu_A(b_1) \leq \mu$. Thus $a_1,b_1 \in A^{(\lambda,\mu)}$. So $(x,y) \in Q$. Hence $R_A^{(\lambda,\mu)} \subset Q$. By reversing the above argument, we have $Q \subset R_A^{(\lambda,\mu)}$. Therefore $Q = R_A^{(\lambda,\mu)}$.

3. Intuitionistic fuzzy cosets

Definition 3.1. Let S be a semigroup, let $A \in \operatorname{IFI}(S)$ and let $x \in S$. We define a complex mapping $Ax = (\mu_{Ax}, \nu_{Ax}): S \to I \times I$ as follows: For each $r \in S$,

$$Ax(r) = (\bigvee_{\substack{x+u=r+v \ u,v \in S}} [\mu_A(u) \wedge \mu_A(v)],$$
$$\bigwedge_{\substack{x+u=r+v \ u,v \in S}} [\nu_A(u) \vee \nu_A(v)]).$$

Then Ax is called the *intuitionistic fuzzy coset determined* by A and x.

It is clear that $Ax \in IFS(S)$.

Remark 3.2. Let A be an k-ideal of a semiring S and let $x \in S$. Then $(\chi_A, \chi_{A^c})_x = (\chi_{Ax}, \chi_{Ax^c})$.

Proposition 3.3. Let S be a ring, let $A \in IFI(S)$ and let $x \in S$. Then

$$Ax(r) = A(x-r) = A(r-x)$$
 for each $r \in S$.

Proof. Let $r \in S$. Then

$$\mu_{Ax}(r) = \bigvee_{\substack{x+a=r+b \ a,b \in S}} [\mu_A(a) \wedge \mu_A(b)]$$

$$\leq \bigvee_{\substack{x+a=r+b \ a,b \in S}} [\mu_A(b-a)] \text{ (Since } A \in IFI(S))$$

$$= \mu_A(x-r) \quad \text{(Since } b-a=x-r)$$

$$= \mu_A(r-x) \quad \text{(Since } R \text{ is a ring)}$$

and

П

$$\nu_{Ax}(r) = \bigwedge_{\substack{x+a=r+b \ a,b \in S}} [\nu_A(a) \vee \nu_A(b)]$$

$$\geq \bigwedge_{\substack{x+a=r+b \ a,b \in S}} [\nu_A(b-a)]$$

$$= \nu_A(x-r) = \nu_A(r-x).$$

On the other hand,

$$\mu_{Ax}(r) = \bigvee_{\substack{x+a=r+b \\ x_i b \in S}} \left[\mu_A(a) \wedge \mu_A(b) \right]$$

$$\leq \mu_A(r-x) \wedge \mu_A(0)$$
(Since $x + (r-x) = r + 0$)
$$= \mu_A(r-x)$$

$$= \mu_A(x-r)$$

and

$$\begin{split} \nu_{Ax}(r) &= \bigwedge_{\stackrel{x+a=r+b}{a,b\in S}} \left[\nu_A(a) \vee \nu_A(b)\right] \\ &\geq \nu_A(r-x) \vee \nu_A(0) \\ &= \nu_A(r-x) = \nu_A(x-r). \\ \text{Hence } Ax(r) &= A(x-r) = A(r-x). \end{split}$$

From Proposition 3.3, we can define the intuitionistic fuzzy coset in a ring as follows.

Definition 3.4. Let R be a ring, let $A \in IFI(S)$ and let $x \in R$. Then the *intuitionistic fuzzy coset determined by* A and x, denoted by Ax, is defined by Ax(r) = A(x-r) for each $x \in R$.

Theorem 3.5. Let S be a semigroup, let $A \in IFI(S)$ and let S/A be the set of all intuitionistic fuzzy coset of A in S. We define two binary operations + and \cdot on S/A as follows, respectively: for any $x, y \in S$,

$$Ax + Ay = Ax + y$$
 and $Ax \cdot Ay = Axy$.

Then + and \cdot are well-defined. Hence $(S/A,+,\cdot)$ is a semiring. In this case, $(S/A,+,\cdot)$ is called the *quotient semiring over* A.

Proof. For any $x,y,p,q\in S$, suppose Ax=Ap and Ay=Aq. Let $r\in S$. Then Ax(r)=Ap(r) and

Ay(r) = Aq(r). By Proposition 2.15 and the definition $Ax, R_A(x,r) = R_A(p,r)$ and $R_A(y,r) = R_A(q,r)$. Thus $R_A(x,p) = R_A(p,p)$ $= (\bigvee_{u,v \in S} \mu_{R_A}(u,v), \bigwedge_{u,v \in S} \nu_{R_A}(u,v))$ (3.1)and $R_A(y,q) = R_A(q,q)$ $=(\bigvee_{u,v\in S}\mu_{R_A}(u,v), \bigwedge_{u,v\in S}\nu_{R_A}(u,v)).$ (3.2)On the other hand, $\mu_{Ax+Ay}(r) = \mu_{Ax+y}(r)$ $=\mu_{R_A}(x+y,r)$ $\geq \mu_{R_A}(x+y,p+q) \wedge \mu_{R_A}(p+q,r)$ (Since R_A is intuitionistic fuzzy transitive) $\geq \mu_{R_A}(x,p) \wedge \mu_{R_A}(y,q) \wedge \mu_{R_A}(p+q,r)$ (Since R_A is intuitionistic fuzzy compatible) $=\mu_{R_A}(p+q,r)$ (By (3.1) and (3.2)) $=\mu_{Ap+q}(r)$ $=\mu_{Ap+Aq}(r)$ and $\nu_{Ax+Ay}(r) = \nu_{Ax+y}(r) = \nu_{R_A}(x+y,r)$ $\leq \nu_{R_A}(x+y,p+q) \vee \nu_{R_A}(p+q,r)$ $\leq \nu_{R_A}(x,p) \vee \nu_{R_A}(y,q) \vee \nu_{R_A}(p+q,r)$ $= \nu_{R_A}(p+q,r)$ $= \nu_{Av+a}(r)$

 $= \nu_{Ap+Aq}(r).$ Then $Ap + Aq \subset Ax + Ay$. By the similar arguments, we have $Ax + Ay \subset Ap + Aq$. So Ax + Ay = Ap + Aq. Also,

$$\begin{split} \mu_{AxAy}(r) &= \mu_{Axy}(r) \\ &= \mu_{R_A}(xy,r) \\ &\geq \mu_{R_A}(xy,pq) \wedge \mu_{R_A}(pq,r) \\ \text{(Since } R_A \text{ is intuitionistic fuzzy transitive)} \\ &\geq \mu_{R_A}(x,p) \wedge \mu_{R_A}(y,q) \wedge \mu_{R_A}(pq,r) \\ \text{(Since } R_A \text{ is intuitionistic fuzzy compatible)} \\ &= \mu_{R_A}(pq,r) \text{ (By (3.1) and (3.2))} \\ &= \mu_{Apq}(r) \\ &= \mu_{ApAq}(r) \\ \text{and} \\ \nu_{AxAy}(r) &= \nu_{Axy}(r) = \nu_{R_A}(xy,r) \\ &\leq \nu_{R_A}(xy,pq) \vee \nu_{R_A}(pq,r) \\ &\leq \nu_{R_A}(x,p) \vee \nu_{R_A}(y,q) \vee \nu_{R_A}(pq,r) \\ &= \nu_{R_A}(pq,r) \end{split}$$

Thus $ApAq \subset AxAy$. By the similar arguments, we have $AxAy \subset ApAq$. So AxAy = ApAq. Hence + and \cdot are well-defined. It can by easily seen that $(S/A, +, \cdot)$ is a semiring. This completes the proof.

 $= \nu_{Apq}(r)$ $= \nu_{ApAq}(r).$

Remark 3.6. (1) In the definition of S/A, if S is a semiring with zero 0 and $A \in IFKI(S)$, then $A = A_0$.

(2) Let S be a semiring, let $R \in IFC_W(S)$ and let $x \in S$. We can define the intuitionistic fuzzy coset Rx by Rx(r) = R(x,r) for each $r \in S$. Then $S/R = \{Rx : x \in S\}$ forms a semiring as above. But

if $A \in IFI(S)$, then $S/A = S/R_A$.

Then following is easily seen.

Proposition 3.7. Let S be a semiring and let $A \in IFI(S)$. We define a mapping $f: S \to S/A$ by f(x) = Ax for each $x \in S$. Then f is a homomorphism.

Definition 3.8. Let S be a semiring and let $R,Q \in IFC_W(S)$. Then Q is said to be R-invariant if R(x,y) = R(u,v) implies that Q(x,y) = Q(u,v) for any $(x,y), (u,v) \in S \times S$.

Remark 3.9. Let R and Q be congruences on a semiring S. If (χ_O, χ_{O^c}) is (χ_R, χ_{R^c}) -invariant, then $R \subset Q$.

Lemma 3.10. Let S be a semiring and let $A \in IFI(S)$. Let R be the intuitionistic fuzzy weak congruence on S induced by A. We define a complex mapping $R/R = (\mu_{R/R}, \nu_{R/R}) : S/A \times S/A \to I \times I$ as follows:

$$R/R(Ax, Ay) = R(x, y)$$
 for any $x, y \in S$.

Then $R/R \in IFC_W(S/A)$.

Proof. It is clear that R/R is well-defined. Moreover, by the definition of R/R, $R/R \in IFR(S/A)$. The rest of the proof is a routine matter of verification. So we omit it. \square

Theorem 3.11. Let S be a semiring, and let $A \in IFI(S)$ and let R be the intuitionistic fuzzy weak congruence on S induced by A. Then there exists a one-to-one correspondence between $IFC_R(S)$ and $IFC_{R/R}(S/A)$, where $IFC_R(S)$ [resp. $IFC_{R/R}(S/A)$] denotes the set of all intuitionistic fuzzy R-invariant [resp. R/R-invariant] weak congruences on S [resp. on S/A].

Proof. Let $Q \in \operatorname{IFC}_R(S)$. We define a complex mapping $Q/R: S/A \times S/A \to I \times I$ by Q/R(Ax,Ay) = Q(x,y) for any $x,y \in S$. For any $x,y,p,q \in S$, suppose Ax = Ap and Ay = Aq. Let $r \in S$. Then Ax(r) = Ap(r) and Ay(r) = Aq(r). Thus R(x,r) = R(p,r) and R(y,r) = R(q,r). So R(x,y) = R(p,y) and R(y,p) = R(q,p). Since Q is R-invariant, Q(x,y) = Q(p,y) = Q(p,q). Hence Q/R is well-defined.

It can be easily shown that $Q/R \in \mathrm{IFC}_W(S/A)$. Now we define a mapping $f: \mathrm{IFC}_R(S) \to \mathrm{IFC}_{R/R}(S/A)$ by f(Q) = Q/R. Let $Q_1, Q_2 \in \mathrm{IFC}_R(S)$ such that $Q_1 \neq Q_2$. Then there exists $(x,y) \in S \times S$ such that $Q_1(x,y) \neq Q_2(x,y)$. Thus $Q_1/R(Ax,Ay) = Q_1(x,y)Q_2(x,y) = Q_2/R(Ax,Ay)$. So f is injective. Let $Q' \in \mathrm{IFC}_{R/R}(S/A)$. We define a complex mapping $Q = (\mu_Q, \nu_Q): S \times S \to I \times I$ as follows: for any $x,y \in S$,

$$Q(x,y) = Q'(Ax,Ay).$$

Then clearly $Q \in IFR(S)$ from the definition of Q. Let $x \in S$. Then

$$\begin{aligned} &Q(x,x)\\ &=Q'(Ax,Ay)\\ &=(\bigvee_{Au,Av\in S/A}\mu_{Q'}(Au,Av),\ \bigwedge_{Au,Av\in S/A}\nu_{Q'}(Au,Av))\\ &=(\bigvee_{u,v\in S}\mu_{Q}(u,v),\ \bigwedge_{u,v\in S}\nu_{Q}(u,v)). \end{aligned}$$

Thus Q is intuitionistic fuzzy weakly reflexive. We can easily see that Q is intuitionistic fuzzy symmetric and intuitionistic fuzzy transitive. So $Q \in IFE_W(S)$. Now let $x,y,a,b \in S$. Then

$$\mu_Q(x+a,y+b)$$

$$= \mu_{Q'}(Ax+a,Ay+b)$$

$$= \mu_{Q'}(Ax+Aa,Ay+Ab)$$

$$\geq \mu_{Q'}(AxAy) \wedge \mu_{Q'}(Aa+Ab)$$
(Since Q' is intuitionistic fuzzy compatible)
$$= \mu_Q(x,y) \wedge \mu_Q(a,b)$$
and
$$\nu_Q(x+a,y+b)$$

$$= \nu_{Q'}(Ax+a,Ay+b)$$

$$= \nu_{Q'}(Ax+Aa,Ay+Ab)$$

 $= \nu_Q(x,y) \vee \nu_Q(a,b).$ By the similar arguments, we have

 $\leq \nu_{Q'}(AxAy) \vee \nu_{Q'}(Aa + Ab)$

$$\mu_Q(xa, yb) \ge \mu_Q(x, y) \land \mu_Q(a, b)$$

and

$$\nu_Q(xa, yb) \le \nu_Q(x, y) \lor \nu_Q(a, b).$$

So $Q \in \mathrm{IFC}_W(S)$. For any $x,y,u,v \in S$, suppose R(x,y) = R(u,v). Then, by the definition of R/R, R/R(Ax,Ay) = R/R(Au,Av). Since $Q' \in \mathrm{IFC}_{R/R}(S/A)$, Q'(Ax,Ay) = Q'(Au,Av). Thus Q(x,y) = Q(u,v). So $Q \in \mathrm{IFC}_R(S)$. On the other hand, Q/R(Ax,Ay) = Q(x,y) = Q'(Ax,Ay). Then Q' = Q/R = f(Q). So f is surjective. Hence f is bijective. This completes the proof.

Theorem 3.12. Let S be a semiring, let $A \in \operatorname{IFI}(S)$ and let R be the intuitionistic fuzzy weak congruence on S induced by A. If $(\lambda_0, \mu_0) = (\bigvee_{u,v \in S} \mu_R(u,v), \quad \bigwedge_{u,v \in S} \nu_R(u,v))$, then $S/A \cong S/R(\lambda_0, \mu_0)$.

Proof. We define mapping $f: S/A \to S/R(\lambda_0, \mu_0)$ by $f(Ax) = xR^{(\lambda_0, \mu_0)}$, where $xR^{(\lambda_0, \mu_0)}$ denotes the congruence class containing x of the congruence $R^{(\lambda_0, \mu_0)}$. For each $x, y \in S$, suppose Ax = Ay. Then

$$\begin{split} &Ax(r) = Ay(r) \text{ for each } r \in S \\ &\Rightarrow R(x,y) = R(y,r) \\ &\Rightarrow R(x,y) = R(y,y) \\ &= (\bigvee_{u,v \in S} \mu_R(u,v), \ \bigwedge_{u,v \in S} \nu_R(u,v)) \\ &= (\lambda_0,\mu_0) \\ &\Rightarrow (x,y) \in R^{(\lambda_0,\mu_0)} \\ &\Rightarrow x R^{(\lambda_0,\mu_0)} = y R^{(\lambda_0,\mu_0)} \end{split}$$

$$\Rightarrow f(Ax) = f(Ay).$$
 So f is well-defined. Let $x, y \in S$. Then
$$f(Ax + Ay) = f(Ax + y)$$
$$= (x + y)R^{(\lambda_0, \mu_0)}$$
$$= xR^{(\lambda_0, \mu_0)} + yR^{(\lambda_0, \mu_0)}$$
$$= f(Ax) + f(Ay)$$

and

$$f(AxAy) = f(Axy) = (xy)R^{(\lambda_0,\mu_0)} = (xR^{(\lambda_0,\mu_0)})(yR^{(\lambda_0,\mu_0)}) = f(Ax)f(Ay).$$

Thus f is a homomorphism. For any $x,y\in S$, suppose f(Ax)=f(Ay). Then $xR^{(\lambda_0,\mu_0)}=yR^{(\lambda_0,\mu_0)}$. Thus $(x,y)\in R^{(\lambda_0,\mu_0)}$, i.e., $R(x,y)=(\lambda_0,\mu_0)$. So, $\mu_R(x,r)\geq \mu_R(x,y)\wedge \mu_R(y,r)$

(Since R is intuitionistic fuzzy transitive) = $\mu_R(y, r)$ for each $r \in S$

and

$$\nu_R(x,r) \le \nu_R(x,y) \lor \nu_R(y,r)$$

$$= \nu_R(y,r) \text{ for each } r \in S.$$

Similarly, we have $\mu_R(y,r) \geq \mu_R(x,r)$ and $\nu_R(y,r) \leq \nu_R(x,r)$ for each $r \in S$. Thus R(x,r) = R(y,r) for each $r \in S$. So Ax(r) = Ay(r) for each $r \in S$, i.e., Ax = Ay. Hence f is injective. It is clear that f is surjective.

Therefore f is an isomorphism. This completes the proof. \Box

References

- 1. K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20(1986), 87-96.
- 2. Baldev Banerjee and Dhiren Kr. Basnet, Intuitionistic fuzzy subrings and ideals, J. Fuzzy Math. 11(1)(2003), 139-155.
- 3. R. Biswas, Intuitionistic fuzzy subgroups, Mathematical Forum x(1989), 37-46.
- 4. S. Bourne and H. Zassenhaus, On semiradical of a semiring, Proc. Nat. Acad., 44(1958), 907-914.
- 5. H. Bustince and P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems 78(1996), 293-303
- D. Çoker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88(1997), 81-89.
- 7. G. Deschrijver and E. E. Kerre, On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems 136(2003), 333-361.

- 8. T. K. Dutta and B. K. Biswas, Fuzzy congruence and quotient semiring of a semiring, The Journal of Fuzzy Mathematics 4(4)(1996), 737-748.
- 9. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy subgroupoids, International Journal of Fuzzy Logic and Intelligent Systems 3(1)(2003), 72-77.
- K. Hur, H. W. Kang and H. K. Song, Intuitionistic fuzzy subgroups and subrings, Honam Mathematical J. 25(2)(2003), 19-41.
- 11. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy subgroups and cosets, Honam Math. J, 26(1)(2004),17-41.
- 12. K. Hur, J. H. Kim and J. H. Ryou, Intuitionistic fuzzy topological spaces, J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 11(3)(2004),243-265.
- 13. K. Hur, K. J. Kim and H. K. Song, Intuitionistic fuzzy ideals and bi-ideals, Honam Math. J. 26(3) (2004), 309-330.
- 14. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy normal subgroups and intuitionistic fuzzy cosets, Honam Math. J. 26(4)(2004), 559-587.
- 15. K. Hur, S. Y. Jang and H. W. Kang, Intuitionistic fuzzy equivalence relations, Honam Math. J. 27(2)(2005), 163-181.
- 16. ______, Intuitionistic fuzzy congruences on a lattice, J. Appl. Math & Computing 18(1-2)(2005), 465-486.
- 17. K. Hur, S. Y. Jang and Y. B. Jun, Intuitionistic fuzzy congruences, Far East J. Math. Sci. 17(1)(2005), 1-29.
- 18. K. Hur, S. Y. Jang and K. C. Lee, Intuitionistic fuzzy weak congruence on a near-ring module, J.

- Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. 13(3)(2006).
- 19. N. Kuroki, Fuzzy congruence and fuzzy normal subgroups, Inform. Sci. 66(1992), 235-243.
- 20. S. J. Lee and E. P. Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 37(1)(2000), 63-76.
- 21. V. Murali, Fuzzy congruence relations, Fuzzy Sets and Systems 41(1991), 359-369.
- 22. M. Samhan, Fuzzy congruences on semigroups, Inform. Sci. 74(1993), 165-175.
- 23. T. Yijia, Fuzzy congruences on a regular semigroup, Fuzzy sets and Systems 117(2001), 447-453.
- 24. L. A. Zadeh, Fuzzy sets, Inform. and Control 8(1965), 338-353.
- 25. L. A. Zadeh, Similarity relations and fuzzy orderings, Inform. Sci. 3(1971), 177-200.
 - ^{1,2} Division of Mathematics and Informational Statistics,

Wonkwang University,

Iksan, Chonbuk, Korea 570-749.

E-mail: kulhur@wonkwang.ac.kr suyoun123@yahoo.co.kr

³ Department of Computer Science,

Dongshin Universuty,

Naju, Chenmam, Korea, 520-714

E-mail: Kclee@dsu.ac.kr