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Abstract

We introduce the concept of intuitionistic fuzzy weak congruence on a semiring and obtain the relation between intu-
itionistic fuzzy weak congruence and intuitionistic fuzzy ideal of a semiring. Also we define and investigate intuitionistic
fuzzy quotient semiring of a semiring over an intuitionistic fuzzy ideal or over an intuitionistic fuzzy weak congruence.
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0. Introduction

The concept of fuzzy set was formulated by Zadeh [24].
Since then, there has been a remarkable growth of fuzzy set
theory. The notion of fuzzy relation on a set was defined
by Zadeh [25]. Some researchers [8,19,21-23] applied the
concept of fuzzy sets to congruence theory. In particular,
Dutta and Biswas [8] investigated fuzzy congruence and
quotient semiring of a semiring.

In 1986, Atanassov [1] introduced the notion of intu-
itionistic fuzzy sets as the generalization of fuzzy sets. Af-
ter that time, Coker {6], Lee and Lee [20], and Hur and his
colleagues [12] applied the notion of intuitionistic fuzzy
sets to topology. Also, several researchers [2,3,9-11,14]
applied the notion of intuitionistic fuzzy sets to algebra. In
particular, Bustince and Burillo [5], and Deschrijver and
Kerre [7] applied the concept of intuitionistic fuzzy sets
to relation. Also, Hur and his colleagues [15] investigated
several properties of intuitionistic fuzzy equivalence rela-
tions. Moreover, Hur and his colleagues [16,17,18] intro-
duced the notion of intuitionistic fuzzy congruence on a
lattice, on a semigroup and on a near-ring module, respec-
tively, and studied some of their properties.

In this paper, we introduce the concept of intuitionistic
fuzzy weak congruence on a semiring. And we obtain the
relation between intuitionistic fuzzy weak congruence and
intuitionistic fuzzy ideal of a semiring. Also, we define
and investigate intuitionistic fuzzy quotient semiring of a
semiring over an intuitionistic fuzzy ideal or over an intu-
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itionistic fuzzy weak congruence.

1. Preliminaries

We recall some definitions and two results that are used
in this paper.

Forsets X, Y and Z,f = (f1,f2) : X - Y x Z is
called a complex mappingif fy : X > Y and fo: X — Z
are mappings.

Throughout this paper, we will denote the unit interval
[0,1] as I and for any ordinary relation R on a set X, we
will denote the characteristic mapping of R as xr.

Definition 1.1[1,6]. Let X be a nonempty set. A complex
mapping A = (ua, va) : X — I x I is called an intu-
itionistic fuzzy set (in short, IFS) in X if foreach x € X
1a(z)+va(x) < 1, where the mappings p4 : X — I and
v4 : X — I denote the degree of membership (namely
14 (x)) and the degree of nonmembership (namely v4(z))
of each z € X to A, respectively. In particular, 0. and 1.
denote the intuitionistic fuzzy empty set and the intuition-
istic fuzzy whole set in X defined by 0. (xz) = (0,1) and
1.(z) = (1,0) for each z € X, respectively.
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We will denote the set of all IFSs in X as IFS(X).

Definitions 1.2[1]. Let X be a nonempty set and let
A= (ua,vs)and B = (up,vp) be IFSs in X. Then
(W)WACPFiffus <ugandvg > vp.
(2Q)A=Biff AC Band B C A.
(3) A® = (va,pa).
WDHANB= ([LA ANpp,vaV VB).
(5)AUB = (pa V up,va Avp).

Definition 1.3[6]. Let {A;};c; be an arbitrary family of
IFSs in X, where A; = (pa,,v4,) for each i € J. Then
(a) ﬂ A= (/\ KA, V Z/Ai)'
) UAi = (V pa,; Ava,).

Definition 1.4[9]. Let A be an IFS in a set X and let
A\, € I with A 4y < 1. Then the set AN = {z € X :
ualz) > Xand va(z) < p}is called a (A, p)-level subset
of A.

Result 1.A[11, Proposition 2.2]. Let A be an IFS in a
set X and let (A1, 1), (A2, o) € ImA. If A3 < Ay and
1 > Ha, then A(Az,uz) C A(Al’ul).

Definition 1.5[5,7]. Let X be a set. Then a complex
mapping R = {(ugr, vgr) : X x X — I x I is called
an intuitionistic fuzzy relation (in short, IFR) on X if
pr(z,y) + vr(z,y) < 1foreach (z,y) € X x X, ie,
ReTIFS (X x X).

We will denote the set of all IFRs on a set X as IFR(X).

Definition 1.6[7] Let X be a set and let R, Q) € IFR(X).
Then the composition of R and @, @ o R, is defined as
follows : forany 2,y € X,

tQor(T,y) =V exbr(®,2) A ug(z,y)]
and

VQOR(:E’y) = /\zeX[VR(.Z‘,Z) \ VQ(Z7y)]'

Definition 1.7[5,7]. An Intuitionistic fuzzy relation R on
a set X is called an intuitionistic fuzzy equivalence relation
(in short, IFER) on X if it satisfies the following conditions

(1) it is intuitionistic fuzzy reflexive,

ie., R(z,z) = (1,0) for each z € X.
(ii) it is intuitionistic fuzzy symmetric,

ie., R(z,y) = R(y,z) forany z,y € X.
(iii) it is intuitionistic fuzzy transitive,

ie, RoRCR.

We will denote the set of all IFERs on X as IFE(X).

Let R be an intuitionistic fuzzy equivalence relation on
aset X and let ¢ € X. We define a complex mapping
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Ra: X — I x Iasfollows: foreachz € X
Ra(z) = R(a,z).

Then clearly Ra € IFS(X). The intuitionistic fuzzy set Ra
in X is called an intuitionistic fuzzy equivalence class of R
containing @ € X. The set { Ra : a € X} is called the intu-
itionistic fuzzy quotient set of X by R and denoted by X/R.

Definition 1.8[17]. An IFR R on a groupoid S is said to
be:

(1) intuitionistic fuzzy left compatible if ug(z,y) <
ur(zz, zy) and vg(z,y) > vr(zz,zy), for any z,y,2 €
S.

IN

(2) intuitionistic fuzzy right compatible if pp(z,y)
pr(zz,yz) and vgp(x,y) > vr(zz,yz), forany z,y,z €
S.

(3) intuitionistic fuzzy compatible if pg(z,y)
pr(z,t) < pr(zz,yt) and vi(z,y) V ve(z,t)
vr(zz,yt), forany z,y,2,t € S.

v >

Definition 1.9[17]. An IFER R on a groupoid S is called
an:
(1) intuitionistic fuzzy left congruence
(in short, I F'LC) if it is intuitionistic fuzzy left
compatible.
(2) intuitionistic fuzzy right congruence
(in short, I F RC)) if it is intuitionistic fuzzy
right compatible.
(3) intuitionistic fuzzy congruence
(in short, I F'C") if it is intuitionistic fuzzy
compatible.

We will denote the set of all IFCs [resp. IFLCs and
IFRCs] on a groupoid S as IFC(S) [resp. IFLC(S) and
IFRC(S)].

Result 1.B[17, Theorem 2.8). Let R be a relation on a
groupoid S. Then R is a congruence on S if and only if

(XR, XRe) € IFC(S).

Let R be an intuitionistic fuzzy congruence on a semi-
group S and let @ € S. The intuitionistic fuzzy set Ra in S
is called an intuitionistic fuzzy congruence class of R con-
taining a € S and we will denote the set of all intuitionistic
fuzzy congruence classes of R as S/R.

2. Intuitionistic fuzzy weak congruences

Definition 2.1. Let S be a set and let 0. # R € IFR(X).
Then R is called an intuitionistic fuzzy weak equivalence
relation (in short, [IFWER) on X if
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(1) R is intuitionistic fuzzy weakly reflexive,
i.e., foreachz € X,
R(2,2) = (Vy aex 1m0, 2), Ay ex vr(y:2)):
(2) R is intuitionistic fuzzy symmetric,
ie., R(z,y) =.R(y,z) forany z,y € X.
(3) R is intuitionistic fuzzy transitive,
ie, RoRCR.

We will denote the set of all IFWERs on X as
IFEw (X).

Proposition 2.2. Let X be a set and let {R,}qcr be a
nonempty set of intuitionistic fuzzy weakly reflexive rela-
tion on X. Then (), R, is intuitionistic fuzzy weakly
reflexive.

Proof. Let R = (. Ry and let z € X. Then
pr(; ) = Nper PR, (2, 2)
= /\aer[v%zex MR, (ya Z)]
= \/y,z€X /\aeF LR, (¥, Z)]
= Vy,.ex 1r(y,2)
and
vr(z,T) = \/aeI‘ VR, (2, )
= vaeF[/\y,zeX VR, (ya Z)]
= Nyzex[Vaer vaa. (4, 2)]
= /\y,zeX VR(ya Z)'
Hence R is intuitionistic fuzzy weakly reflexive. ]

Definition 2.3[4]. A semiring is defined by an algebra
(S,+,-) such that (S,+) and (S,-) are semigroup con-
nected by a(b + ¢) = ab + ac and (b + ¢)a = ba + ca for
any a,b,c € S. A semiring may have an identity 1 defined
by la = al = a and a zero (which is an absorbing zero
also) 0 defined by a + 0 =0+4+a¢ = aand a0 = 0a = 0
for each @ € S. A semiring S is said to be additively
commutative if (S, +) is commutative and multiplicatively
commutative if (S, -) is commutative.

Definition 2.4. Let S be a semiring and let R € IFR(S).
Then R is said to be:
(1) intuitionistic fuzzy left compatible if for any
a, bt e s,
pr(t+a,t+b) > prla,b),
vr(t+a,t+b) < vgr(a,b)
and
pr(ta,th) > pr(a,b),
vr(ta,th) < vgp(a,b).
(2) intuitionistic fuzzy right compatible if for any
a,b,t €S,
prla+t,b+1) > pr(a,b),
vr(a+t,b+t) <vgla,b)
and
Hr (at) bt) E (a7 b)?
vr(at,bt) < vg(a,b).

(3) intuitionistic fuzzy compatible if it is both intuition-
istic fuzzy left compatible and intuitionistic fuzzy right
compatible.

The following is the immediate result of Definitions 2.3
and 2.4.

Proposition 2.5, Let S be a semiring and let R € IFR(.S).
Then R is intuitionistic fuzzy compatible if and only if for
any a,b,¢c,d € S,
prla+c,b+d) > pr(a,b) A pric,d),
vr(a+¢,b+d) < wvgr(a,b) Vvr(c,d)
and
pr(ac,bd) > pr(a,b) A pr(c, d),
vr(ac,bd) < vg(a,b) V vg(e, d).

Definition 2.6. Let S be a semiring and let B € TFR(S).
Then R is called:
(1) an intuitionistic fuzzy congruence (in short, IFC) on
S'if R € IFE(S) and R is intuitionistic fuzzy compatible.
(2) an intuitionistic fuzzy weak congruence (in short,
IFWC) on S if R € IFEy(S) and R is intuitionistic fuzzy
compatible.

We will denote the set of all IFCs [resp. IFWCs on
S as IFC(S) [resp. IFCy (S)]. It is clear that IFC(S) C
IFCw/ (S).

Example 2.7. Let N be the additively commutative semir-
ing of all nonnegative integers with respect to the usual ad-
dition and multiplication. Then N contains zero which is
absorbing. We define a complex mapping R = (ug,vg) :
N x N — I x I as follows: for any z,y € N,

(1,0) if z =y,
_} (0.5,04) ifaz # yandbothz,y are
R(z,y) = even or both z, y are odd,
(0,1) otherwise.

Then it can be easily verified R € IFC(IN).

The following is the immediate result of Propositions
2.2 and 2.5 and Definition 2.6.

Proposition 2.8. Let S be a semiring and let { Ry }aer
be a nonempty subset of IFC(S) [resp. IFCy(S)]. Then
Maer Ra € IFC(S) [resp. IFCy (S)].

The following is the similar result as Result 1.B.
Theorem 2.9. Let R be a relation on a semiring S. Then
R is a congruence on S if and only if (xz, xre) € IFC(S)
NIFCy (S).

Hur and his colleagues in Proposition 2.13 of [17]
proved that if R is an IFC on a groupoid .S, then for each
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(A ) € I x I, RM* is a congruence on S. But our
definition of intuitionistic fuzzy weak reflexivity enables
as to establish both necessary and sufficient condition of
the Theorem which is as follows.

Theorem 2.10. Let 5 be a semiring and let £ € IFR(S).
Then R € IFCy (S) if and only if R#) is a congruence
on S foreach (A, u) € ImR.

Definition 2.11. Let A be a nonempty intuitionistic fuzzy
set in a semiring S. Then A is called an intuitionistic fuzzy
ideal (in short, IFT) of S if it satisfies the following condi-
tions: For any z,y € S,

0 pa(z +y) 2 pal@) Apaly)

andva(z +y) <valz) Vrvaly),
(i) pa(zy) > paly) and va(zy) < valy),
(i) pa(zy) > palz) and va(zy) < va(z).

It is clear that p4(0) > pa(z) and va(0) < va(w)
for each z € §. We will denote the set of all IFIg of S as
IFI(S).

A k-ideal J of a semiring S is an ideal such that if
ac€Jandx e Sandzx+aora+z € J,thenz € J (See
[4D.

Definition 2.12. Let S be a semiring and let A € IFI(S).
Then A is called an intuitionistic fuzzy k-ideal (in short,
IFKD) of Sif forany z,y € S,

pa(@) 2 pale +y) V paly + )] A pa(y)
and

va(z) < [vale+y) Avaly + o)) Vvaly).
If S is additively commutative, then the condition reduces
to

pa(@) = palz +y) A paly)
and

va(z) < valz+y) Vrvaly)
for any z,y € S.

We will denote the set of all IFKIs of S as IFKI(S).

Proposition 2.13. Let S be a semiring and let 0., # A €
IFS(X). Then A € IFKI(S) [resp. IFI(S)] if and only if
A1) is a k-ideal [resp. an ideal] of S for each (\, 1) €
ImA.

Proof. (i) (=) : Suppose A € IFI{(S) and let (A, ) €
ImA. Leta,b € AN andlet z € S. Then pa(a) > A,
vala) <pand pa(b) > A va(b) < p. Thus
pala+b) > p(a) Apad) = AAX=A

and

vala+b) S ve(a) Voalb) <pVpu=p.
Soa+be AXH, On the other hand, pia(za) > pa(a) >
Aand va(za) < ve(a) < p. Thus za € AR Similarly,
we have az € AA#), Hence AX#) is an ideal of S.
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(<) : Suppose AX#) is an ideal of S for each (X, i) €
ImA. For any z,y € S, let A(z) = (A, 1) and
Aly) = (Ao, p2) such that Ay < Mg and gy > ps.
Then clearly z € AP1#1) and y € AQP2:#2)  Since
AQ2.p2) A1), y € A(/\lyl“})' Since APL#1) g
an ideal of S, & + y € AM#) and zy € AP#1) and
yx € AA1#1) Then

palz+y) > A =X AXe = palz) A paly),

valz+y) < =1 Vi =v4(x)Valy),

pa(zy) > A = pa(@), va(zy) < =va(2),

palyz) > A = pa(x), valye) < py = va(x).
Hence A € IFI(S).

(ii) (=) : Suppose A € IFKI(S) and let (A, ;1) € ImA.
Then, by (i), A is an ideal of S. For each a € A+ and
eachz € S, suppose z +a € AMM ora + 2 € AXH,
Then pa{z +a) > A\ valz+a) <porpale+z) > A,
vala+ x) < p. Since A € IFKI(.S),

pa(@) = [pala+ ) V pa(z +a)] A pala) = A
and

va(z) < vala+z) Avalz +a)] Vvale) < p.
Thus = € AM#), Hence A is a k-ideal of S.

(<) : Suppose AX#) is a k-ideal of S for each
(A, u) € ImA. Then, by (i), A € IFI(S). For any
z,y € 8, let A(z) = (Aq,) and A(y) = (A2, o)
such that Ay < As and p1 > po. Thenz € ARm1) and
y € AP2#2) By Result 1.A, since AR2:#2) ¢ AGum),
y € AP Thusz +y € AAv#) andy + 2 € AGH),
So [palz+y)Vualy+z)Apaly) > (M VI)AN =
AL ]

Proposition 2.14. Let S be a semiring with zero 0 and
let R € IFCy, (S). We define a complex mapping Ar =
(Hap,vap) S — I x I asfollows: foreach ¢ € S,

Ar(a) = R(a,0).

Then Ag € IFKI(S). In this case, Ap is called the intu-
itionistic fuzzy k-ideal induced by R.

Proof. Ag(0) = R(0,0)
= (Vm,yes /'LR("E7 y)7 /\a;,yES VR(xv y))
# (0,1) since R # O..
Then Ag # 0. Leta,b € S. Then
MAR(a + b) = NR(a +b, 0)
> ,LLR(G, O) A /’[’R(ba 0)
(Since R € IFCw (S))
= ptag(a) A pAr(b)
and
vag(a+b) = pr(a+0b,0)
< VR(ay 0) A ’/R(ba O)
=va,(a) VvAR(D).
Also,
i (ab) = (ab, 0)
> pr(a,0) A pr(d,0)
(Since R € TFCw (5))
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= ,U,R(b, 0)
= pAg(b)
and
vap(ab) = vr(ab,0)
< wvg(a,0) Vvg(b0)
== I/R(b7 O)
= Z/AR(b)
Similarly, we have pa,(ab) > pa,(a) and va,(ab) <
vap(a). So Ar € TFI(S). On the other hand,
tag(a) = pr(a,0)
2 VZGS[“R(aa JJ) A /‘R(Iv 0)]
(Since Ro R C R)
2 /U‘R(aa a+ b) A .LLR(CL + b, 0)
> [pr(a,a) A pr(0,b)] A pr(a +b,0)
(Since R is intuitionistic fuzzy compatible)
= )uR(Oa b) A ,uR((I + b, 0)
= prla+b,0) A pgr(b,0)
= pap(a+0) A pay(b)
and
VAR(G“) = vg(a,0)
< Nieslvr(a,z) V vr(z,0)]
<vg(a,a+b)Vvg(a+b,0)
< [vr{a,a) Vvr(0,b)] V vr(a +b,0)
= vr(0,b) Vvg(a+ b,0)
= vr(a+b,0) vV vr(b0)
=va,(a+b)Vva,(b).
Hence Ar € IFKI(S). This completes the proof. O

Proposition 2.15. Let S be a semiring with zero 0 and
let A € IFI(S). We define a complex mapping R4 =
(Lrs,VR,) @ S xS — I x I as follows: for each
(z,y) € S xS,
Ra(z,y) = (V ottt [kala) A pa(b)],
A a+as=yLh [vala) v va(b)]).

Then Ry € IFWC(S ). In this case R4 is called the intu-
itionistic fuzzy weak congruence induced by A.

Proof. Since A # 0., itisclearthat R4 # 0. Letz € X.
Then
Hra(Z,2) = Varazuis [pala) A pa(b)]
> pafa) A pa(0)
(Since z +0 =z 4 0)
> pa(u) A pa(v)

for any u,v € S (2.1)
and
vr,(z,y) = /\mtab=€ys+b [vala) vV va(b)]
< wala) V va(0)
<wva(u) Vwa(v)
for any u,v € S. (2.2)

Since iy (1:2) = Vet (ua(a) A pa(v)] and

v (y,2) = /\z—t;uq}:ey;v valu) V va(v)] for any y,z €
S, by (2.1) and (2.2), pr,(z,z) > pr,(y,z) and

vr,(z,z) <vp,(y,z) forany y,z € S. So ug,(z,x) >

Vy,zeS pra(y,2) and vp,(z,z) < /\y,zeS VR4 (U, 2),
ie., Ra(z,x) = (\/y7zes 1R (Y, 2), /\y,zeS VR4 (Y, 2))-
Hence R4 is intuitionistic fuzzy weakly reflexive. It is
clear that R4 is intuitionistic fuzzy symmetric. Now let
z,y € S. Then
HR4 (iE, y)
= thil;ys‘*’b [,LLA(a) A pa(b))
> Votomete Vogemye [(14(0) A ra(0))
a,c€S b,cE€S
A (pa(e) A pa(b))]
= (Verazsre[pala) A pa()))
ANV =ge=pe [ale) A pa(b)])

= R4 (2, 2) A pir,(2,9)

and
VR4 (T, Y)
= /\wtab:égb vala) Vva(b)]
< /\m+a=z+c /\z+c:y+b [(I/A(a) \Y I/A(c))
a,ceS b,c€S
V (va(e) vV va(h))]
= (Astazzpelvala) Vvale))
v (/\ztc;y;b [vale) Vva(b)])
= VR4 (27, Z) VVR, (Za y)
Thus
HR4 (2,y) > vzes[NRA (,2) A PRy (Zv y)]
= HR4o0RA (ZE', y)
and
VR4 (‘T> y) < /\zES[VRA (z,2) V VRa (Za y)]
= VR40R4 (m,y)
So R4 is intuitionistic fuzzy transitive.
IFEy (S).

Now leta,b,c,d € S. Let pp, (a,b) > pr,(c,d) and
vp,(a,b) < vp,(c,d). Suppose up,(a+ c¢,b+d) >
trala,b) and vg,(a + ¢,b + d) < vg,(a,b). Then
clearly pr, (¢ + ¢,b + d) > pgr,(a,b) A pr,(c,d) and
vr,(a +c,b+d) < vp,(a,b) VvV vgr,(c,d). Suppose
pra(a+c,b+d) > pr,(a,b)and vy, (a +¢,b+ d) <
vr, (a,b). Then there existw, v € S such that a+u = b+v
and

HRA (a' +cb+ d) > :U'A(u) A :U’A(U)’

veRa(a+cb+d) <valu)Vva(v).

Let u,v € S such that c + u; = d + vi. Then
tra(a+cb+d)

> pa(u+ui) A pa(v+vi)

(Sincea+c+u+u =b+d+v+wv)

2 pa(u) A palu) A pa(v) + palve)

= [pa(w) A pa)] A fpa(ui) A pa(vr)]
and

Hence R4 €

(2.3)

vr.(a+cb+d)
Swvalu+ur) Vva(v+v)
<wva(u)Vvalu) Va(v) +va(v)
= [va(u) Vva@)]V va(u) Vva(v)l.
By (2.3), prala+c,b+d) > pa(ur) Apa(vr), v, (a+
e, b+d) <wva(ur) Vwva(v).
Thus
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pry(at+c,b+d)
2 vctu1;’d€+;1 [a(ur) A pa(vr)]

= KR4 (Ca d)
= HUR4 (a’a b) A HR, (C, d)
and
vr,la+c,b+d)
< Actur= din va(ur) Via(n)]

uy,v €S
= VR4 (C d)
=vg,(a,b) Vg, (cd).
Let Ra(a,b) = Ra(c,d). Then we can show that:
BRA (a' +cb+ d) 2[R, (aa b) NIR4 (C, d)
and
VRA(G’ +cb+ d) < I/RA(U’7 b) V VR, (C, d)
By the similar arguments, we can see that:
pra(ac,bd) > pp,(a,0) A pg,(c,d)
and
vr,(ac,bd) < vp,{(a,b) Vvr,(c,d).
Thus R 4 is intuitionistic fuzzy compatible. Hence R4 €
IFCyy (.S). This is completes the proof. a

Corollary 2.16. In Proposition 2.15, if A € IFKI(S), then
R 4 is the smallest intuitionistic fuzzy weak congruence on
S such that R4 (x,0) = A(z).

Proof. Suppose A € IFKI(S).
z+a=0+b. Then
pa(a) A pa(d) = pala) A pa(z+a)
< pua{z) (Since A € IFKI(S))

Let a,b € S such that

and
vala)Vea(b) =vala)Vva(z+a)
> vy(x).
Thus
Pra(2,0) = Verazors [pala) A pa(b)]
. < pa(z)

Vi (2,0) = Aspazass [va(a) V va(b)]
> va(x).
On the other hand,
pra(2,0) = Vetazoss [pa(a) A pa(b)]
> pal(z) A pa(0) (Sincez + 0 =0+ 2)
= pa(z)
and

VR, (:13, O) = /\ztabzeog-b [VA(a) V VA(b)]
< wvalz) Vva(0)
= va(x).
So R4(z,0) = A(z).
Let @ € IFCw (S) such that Q(z,0) = A(z). Let
(r,y) e Sx Sandletz +a =y +b,a,b e S. Then
1Q(z,y) > po(z, 2 +a) A pg(z + a,y)
(Since( is intuitionistic fuzzy transitive)
> pg(@, ) A pg(0,a) A ug(y +b,y)
(Since @ is intuitionistic fuzzy transitive)
> HQ (07 a‘) A HQ (ba 0)
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(Since @ is intuitionistic fuzzy transitive)
= /LQ(G,, 0) N pQ (b 0)
(Since () is intuitionistic fuzzy transitive)
= pa(a) A pa(b)
and ’
<vo(z,z+a)Vglz+a,y)
vg(z,z) Vvg(0,a) v vg(y + b,y)
vo(0,a) V vg(b,0)
vo(a,0) vV vg(b,0)
va(a) Vva(d).

f |/\|/\S

Il

1pQ(®,y) = Vetazyso [nala) A pa(b))
= R4 (T, Y)

va(@,y) < Awromyys[vala) V va(d)
= VR, (2,9).
So Ry C Q. Hence R4 is the smallest intuitionistic fuzzy
weak congruence on S such that R 4(z,0) = A{x) for each

2 € S. This completes the proof.
O

Theorem 2.17. Let S be a semiring with zero 0. Then,
there exists an inclusion preserving injection from IFKI(.5)
to IFCy (S).

Proof. We define a mapping f : IFCy (S} — IFKI(S) and
a mapping g : IFKI(S) — IFCw (S) as follows, respec-
tively: for each R € IFCy, (S) and each A € IFKI(S),

f(R)

Then, by Proposition 2.15 and Corollary 2.16, f and g
are will-defined. Moreover, (f o g)(4) = f(g(4)) =
f(Ra) = Ap, for each A € IFKI(S) and Ag,(a) =
Ra(a,0) = Afa) foreacha € S. Thus (f o g)(4) =
A = idipki(s)(A) foreach A € IFKI(S). So g is injective.
Now let A, B € IFKI(S) suchthat A C Bandletz,y € S.
Then

prp (% Y) = Verazyss [up(a) A pp(0)]
> pa(a) A pp(b)
= pala) A pp(b)

= Agand g(A) = Rx.

and
VRs(2,Y) = Netazvss [Vp(a) V v (D))
< v(a) Vs (b)
< vala) vV vs(b).
Thus
s (2,9) = Voo yso (@) A pa()]
= ur, (2,y)
and
Y (@,9) = Nesomyio [0a(0) V va(D)]
=VR, (ZE, y) .
So R4 C Rp,ie., g(A) C g(B). Hence g is an inclusion
preserving injection. This completes the proof. O
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Proposition 2.18. Let S be a semiring with zero 0. Let
R € IFCy(S) and let Ag be the intuitionistic fuzy k-ideal
induced by R. Then Ag\’“) ={z € S:z=0RMN}
for each (A, ) € ImR.

Proof. Let (A, u) € I x I and leta € S. Then
ae A
ifand only if pa,(a) > Aand va,(a) <
if and only if pg(a,0) > X and vr(a,0) < p
if and only if (a,0) € R*#)
if and only if a = O(R*#)
ifandonlyifa € {z € S : z = O(RM#)}.
|

Definition 2.19[9]. Let A be an intuitionistic fuzzy set in
a semigroup S. Then A is said to have the sup-property
if for any subset 7" of S, there exists tg € T such that
Afto) = User A(t), ie., palto) = Vier pa(t) and
valto) = Nyer valt).

Proposition 2.20. Let S be a semigroup and let A €
IFKI(S). Let R4 be the intuitionistic fuzzy weak congru-
ence on S induced by A. If R has the sup-property, then
Rf‘{\’“) is a congruence on S induced by A for each
(A, 1) € ImA.

Proof. Let (A, 1) € ImA and let @ be the congruence on
S induced by AXM#), ie., (z,y) € Q if and only if there
exist 41,49 € A sych that @ + i3 = y + 2 (See p.908
in [4]). Let (x,y) € RE‘{\’” ). Since A has the sup-property,
there exist a1, ay € S such that z + a; = y + b1, and
pRA(2,y) =V erazyro [nala) A pa(b)]
= palar) A pa(b)
>
and
VRa(Z:Y) = Notazuse[vala) V va(b)]
=va(a1) Vva(h)
< e
Then pa(ar) > A, valar) < pand pa(b) > A
va(b) < p. Thus a;,by € AMH . So (2,9) € Q.
Hence ng\"‘ ) ¢ Q. By reversing the above argument, we

have Q C R{*). Therefore Q = R{™. a

3. Intuitionistic fuzzy cosets

Definition 3.1. Let S be a semigroup, let A € IFI(S)
and let x € S. We define a complex mapping Ax =
(BAz,Vaz) : S — I x I as follows: Foreach r € S,
A2 () = (Vomurge laa () A pa (@),
/\mt?:erg—v walu) vVva(v))).

Then Az is called the intuitionistic fuzzy coset determined
by A and x.

It is clear that Az € IFS(S).

Remark 3.2. Let A be an k-ideal of a semiring S and let
z € S. Then (xa,x4¢<), = (XAz> XAze)-

Proposition 3.3. Let S be a ring, let A € IFI(S) and let
z € S. Then
Az(r)= Az —r) = A(r —z) foreachr € S.

Proof. Let » € S. Then
paz(r) = Vera=rse [na(a) A pa(d)]
< VI*“:;?” [1a(b — a)] (Since A € IFI(S))
:uA(Z—r) (Sinceb—a=x—r)
=pa(r—2z) (Since Risaring)
and
Vas(r) = Nesazrso [va (@) V a(D)
> /\+=+ [va(d — a)]
= Z/A(lz —r)=va(r —z).
On the other hand,
pac(r) = Vorsazera [14(0) A pa(0)]
< pa(r—z) A pa(0)
(Since z + (r —z) =r+0)
= pa(r — )
= palz — 7“)
and
Vas(r) = Nepacrova(@) V va(t)
> va(r — )V va(0)
=valr—z)=valz —r).
Hence Az(r) = A(z —r) = A(r — z). O

From Proposition 3.3, we can define the intuitionistic
fuzzy coset in a ring as follows.

Definition 3.4. Let R be a ring, let A € IFI(S) and let
x € R. Then the intuitionistic fuzzy coset determined by A
and x, denoted by Az, is defined by Az(r) = A(z —r) for
eachz € R.

Theorem 3.5. Let S be a semigroup, let A € IFI(S) and
let S/A be the set of all intuitionistic fuzzy coset of A in
5. We define two binary operations + and - on S/A as
follows, respectively: for any z,y € S,
Az 4+ Ay = Az +y and Ax - Ay = Axy.

Then + and - are well-defined. Hence (S/A4,+,-) is a
semiring. In this case, (S/A,+,) is called the quotient
semiring over A.

Proof. For any z,y,p,q € S, suppose Az = Ap and
Ay = Ag . Letr € S. Then Az(r) = Ap(r) and
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Ay(r) = Aq{r). By Proposition 2.15 and the definition
Az, Ra(z,7) = Ra(p,7)and Ra(y,r) = Ra(q,r). Thus
Ra(z,p) = Ra(p,p)

= (Vu,vES IU’RA (u’U)’/\u,veS VRA (U,U)) (31)
and
RA (ya Q) = RA (q7 q)
= (vu,ueS KR, (u,v), /\u,ves VR4 (U, v)). (3.2)

On the other hand,
HAz+Ay (r) = ,“Az+y('r)
= prs(T+y,7)
> ura(T+ 4P+ @) Aprs(P+ g, 7)
(Since R4 is intuitionistic fuzzy transitive)
2 pRrA(2,0) ARy (Y,9) ARy (P+,T)
( Since R 4 is intuitionistic fuzzy compatible)
= pur,(p+q,7) By (3.1) and (3.2))
== HAp+q (r)
== faptaq(T)
and
VAz+Ay(7") = VAz+y (r) = vr,(z +y,7)
SvR,(z+y,p+a) VR, (P+aq,T)
SVRL(T,P) VVRL (Y, Q) V VR, (P + ¢, T)
=vr,(p+aq,7)
= Vap+q(T)
= Vap+4q(T).

Then Ap 4+ Aq C Az + Ay. By the similar arguments,
we have Az + Ay C Ap + Aq. So Az + Ay = Ap + Aq.
Also,

HAzAy (7') = KAzy (T)

= KR4 (xy, T)
> ur,(2Y,Pq) A 1R, (Pg;T)

(Since R4 is intuitionistic fuzzy transitive)
> 1R (T, D) AR, (Y, @) A R4 (PG, T)

(Since R 4 is intuitionistic fuzzy compatible)
= pur,(pg,7) (By (3.1) and (3.2))
= frapg(7)
= papaq(T)

and
Vazay(T) = Vacy(r) = vr, (2Y,7)

< vr,(zy,pa) V VR, (PG, T)
SR, (2,P) V VR, (¥,0) V VR4 (PG, T)
= v, (pg,T)
= Vapq(7)
= Vapaq(7)-

Thus ApAq C AzAy. By the similar arguments, we
have Az Ay C ApAq. So Az Ay = ApAq . Hence + and -
are well-defined. It can by easily seen that (S/A,+,-) is a
semiring. This completes the proof. O

Remark 3.6. (1) In the definition of S/A, if S is a semiring
with zero 0 and A € IFKI(S), then A = Ay.

(2) Let S be a semiring, let R € IFCy,(S) and let
x € S. We can define the intuitionistic fuzzy coset
Rz by Rz(r) = R(z,r) for each + € S. Then
S/R = {Rx : z € S} forms a semiring as above. But
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if A € IFI(S), then S/A = S/Ra4.
Then following is easily seen.

Proposition 3.7. Let S be a semiring and let A € IFI(.S).
We define a mapping f : S — S/A by f(z) = Az for
each z € S. Then f is a homomorphism.

Definition 3.8. Let S be a semiring and let R,Q <
IFCy (S). Then @ is said to be R-invariant if
R(z,y) = R(u,v) implies that Q(z,y) = Q(u,v) for
any (z,y), (u,v) € § x S.

Remark 3.9, Let R and () be congruences on a semiring
S.If (xo, xqe) is (X R, Xre)-invariant, then R C Q.

Lemma 3.10. Let S be a semiring and let A € IFI(S).
Let R be the intuitionistic fuzzy weak congruence on §
induced by A. We define a complex mapping R/R =
(r/RsVR/R) : S/A X SJA — I x I as follows:

R/R(Az, Ay) = R(x,y) for any z,y € S.
Then R/R € IFCy (S/A).

Proof. It is clear that R/R is well-defined. Moreover, by
the definition of R/R, R/R € IFR(S/A). The rest of the
proof is a routine matter of verification. So we omitit. [J]

Theorem 3.11. Let S be a semiring, and let A € IFI(.S)
and let R be the intuitionistic fuzzy weak congruence on
S induced by A. Then there exists a one-to-one corre-
spondence between IFCg(S) and IFCg,r(S/A), where
IFCR(S) [resp. IFCg/r(S/A)] denotes the set of all in-
tuitionistic fuzzy R-invariant [resp. R/R-invariant] weak
congruences on S [resp. on S/A].

Proof. Let Q € IFCg(S). We define a complex mapping
Q/R:S/Ax S/A—TxIbyQ/R(Az, Ay) = Q(z,y)
forany z,y € S. Forany z,y,p,q € S, suppose Az = Ap
and Ay = Aq. Letr € S. Then Az(r) = Ap(r) and
Ay(r) = Aq(r). Thus R(z,r) = R(p,r) and R(y,r) =
R(g,r). So R(z,y) = R(p,y) and R(y,p) = R(g,p).
Since @ is R-invariant, Q(z,y) = Qp,y) = Q(p,q).
Hence /R is well-defined.

It can be easily shown that Q/R € IFCy, (S/A). Now
we define a mapping f : IFCr(S) — IFCpg/p(S/A)
by f(Q) = Q/R. Let Q1,Q2 € IFCg(S) such that
Q1 # Q2. Then there exists (z,y) € S x S such
that Q1(z,y) # Q2(z,y). Thus Q1/R(Az, Ay) =
Q1(z,y)Q2(z,y) = Q2/R(Az, Ay). So [ is injective.
Let Q' € IFCg,r(S/A). We define a complex mapping
Q = (po,vg) : S xS — I x I as follows: for any
z,y €5,

Q(z,y) = Q'(Az, Ay).
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Then clearly @ € IFR(S) from the definition of ). Let
xz € 5. Then
Q(z,x)
= Q'(Az, Ay)

= (\/Au,AveS/A o (Au, Av), /\Au,AvGS/A v (Au, Av))

= (Vu,ves :LLQ(U’ U)? /\u,ves VQ(U’ U))
Thus @ is intuitionistic fuzzy weakly reflexive. We can
easily see that €) is intuitionistic fuzzy symmetric and in-
tuitionistic fuzzy transitive. So @ € IFEw (S) . Now let
x,y,a,b € S. Then
po(z +a,y +b)
= /LQ/(A.’E +a, Ay + b)
= po(Az + Aa, Ay + Ab)
> poy (AzAy) A por(Aa + Ab)
(Since @’ is intuitionistic fuzzy compatible)
= pq(z,y) A pela,b)
and
vg(z +a,y +b)
=vo (Ax +a, Ay + b)
= Z/Q/(ACC + Aa, Ay + Ab)
< vg (AzAy) V vg (Aa + Ab)
=vg(z,y) Vrgla,b).
By the similar arguments, we have

nq(za,yb) > pglz,y) A pgla,b)

and

vo(za,yb) < volz,y) Vvg(a,b).
So @ € IFCw(S). For any z,y,u,v € S, sup-
pose R(z,y) = R(u,v). Then, by the definition of
R/R, R/R(Az,Ay) = R/R(Au,Av). Since Q' €
IFCr/r(S/A), Q'(Az,Ay) = Q'(Au,Av). Thus
Qz,y) = Qu,v). So Q € IFCg(S). On the other
hand, @/R(Az, Ay) = Q(z,y) = Q' (Az, Ay). Then
Q' = Q/R = f(Q). So f is surjective. Hence f is bijec-
tive. This completes the proof. O

Theorem 3.12. Let S be a semiring, let A €
IFI(S) and let R be the intuitionistic fuzzy weak
congruence on S induced by A. If (Ao, o)
(Vapes bR, 1), Ny yes Vr(U,0)),  then S/A
S/R(/\OMMO)

[ra]l

Proof. We define mapping f : S/A — S/R(\o, o) by
f(Az) = zRGo:#0) where z R(*o-#0) denotes the congru-
ence class containing x of the congruence R(o:r0) - For
each x,y € S, suppose Ax = Ay. Then
Az(r) = Ay(r) foreachr € S
= R(z,y) = R(y,7)
= R(z,y) = R(y,y)
= (Vuyves br(,0), A, yesVrR(U,0))
= (Ao, o)
= (z,y) € R(Xo:x0)
= xR()\mNO) — yR()\o,,uo)

= f(Az) = f(Ay).
So f is well-defined. Let x,y € S. Then
f(Az + Ay) = f(Az +y)
= (x —+ y)R(/\O:MO)
— g RPosro) yR()‘OaNO)

= f(Az) + f(Ay)
and

f(AzAy) = f(Azy)
— (Ccy)R(Ao,lLo)
= (xR(Xo,Ho))(yR(/\oylto))
— F(Ax) f(Ay).
Thus f is a homomorphism. For any z,y € S, suppose
f(Az) = f(Ay). Then zRMo#0) = ¢ R(Ao:40)  Thus
(z,y) € RPoro) e, R(x,y) = (Ao, o). So,
pr(@,7) > pr(z,Y) A pr(y,T)
(Since R is intuitionistic fuzzy transitive)
= pgr(y,r) foreachr € §
and
vr(z,7) <vg(z,y) Vve(y,r)
=vg(y,r) foreachr € S,
Similarly, we have ugr(y,r) > pr(z,r) and vr(y,r) <
vr(z,r) for each r € S. Thus R(z,r) = R(y,r) for each
r € S. So Az(r) = Ay(r) foreachr € S, ie., Az = Ay.
Hence f is injective. It is clear that f is surjective.
Therefore f is an isomorphism. This completes the
proof. 0
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