Linear Complexity and 1-Error Linear Complexity over $F_p$ of M-ary Sidel'nikov Sequences

M진 Sidel'nikov 수열의 $F_p$ 상에서의 선형복잡도와 1-오류 선형복잡도

  • 정진호 (포항공과대학교 전자전기공학과 통신 및 신호설계 연구실) ;
  • 양경철 (포항공과대학교 전자전기공학과 통신 및 신호설계 연구실)
  • Published : 2006.12.30

Abstract

In this paper we derive some lower bounds on the linear complexity and upper bounds on the 1-error linear complexity over $F_p$ of M-ary Sidel'nikov sequences of period $p^m-1$ when $M\geq3$ and $p\equiv{\pm}1$ mod M. In particular, we exactly compute the 1-error linear complexity of ternary Sidel'nikov sequences when $p^m-1$ and $m\geq4$. Based on these bounds we present the asymptotic behavior of the normalized linear complexity and the normalized 1-error linear complexity with respect to the period.

본 논문에서는 $M\geq3$이고 $p\equiv{\pm}1$ mod M인 경우에 대해서 주기가 $p^m-1$인 M진 Sidel'nikov 수열의 $F_p$ 상에서의 선형복잡도의 하계와 1-오류 선형복잡도의 상계를 유도한다. 특히 $m\geq4$이고 $p\equiv-1$ mod 3인 경우에는 3진 Sidel'nikov 수열의 정확한 1-오류 선형복잡도를 계산한다. 이 결과들을 바탕으로 선형복잡도와 1-오류 선형복잡도의 주기에 대한 비율의 근사적 특성을 제시한다.

Keywords

References

  1. V. M. Sidel'nikov, 'Some $\kappa$-valued pseudo-random sequences and nearly equidistant codes,' Probl. Inf. Transm., vol. 5, no. 1, pp. 12-16, Jan. 1969
  2. A. Lempel, M. Cohn and W. L. Eastman, 'A class of balanced binary sequences with optimal autocorrelation properties,' IEEE Trans. Inform. Theory, vol. 23, no. 1, pp. 38-42, Jan. 1977 https://doi.org/10.1109/TIT.1977.1055672
  3. M. Stamp and C. Martin, 'An algorithm for the $\kappa$-error linear complexity of binary sequences with period $2^{n}$,' IEEE Trans. Inform. Theory, vol. 39, no. 4, pp. 1398-1401, July 1993 https://doi.org/10.1109/18.243455
  4. T. Helleseth and K. Yang, 'On binary sequences of period $p^{m}$-1 with optimal autocorrelation,' Sequences and Their Applications 2001, Discrete Mathematics and Theoretical Computer Science, Springer, pp. 209-217, Aug. 2001
  5. T. Helleseth, S.-H. Kim, and J.-S. No, 'Linear complexity over$F_{P}$ and trace representation of Lempel-Cohn-Eastman sequences,' IEEE Trans. Inform. Theory, vol. 49, no, 6, pp. 1548-1552, June 2003 https://doi.org/10.1109/TIT.2003.811924
  6. T. Helleseth, M Maas, J. E. Mathiassen, and T. Segers, 'Linear complexity over $F_{P}$of Sidel'nikov sequences,' IEEE Trans. Inform. Theory, vol. 50, no, 10, pp. 2468-2472, Oct. 2004 https://doi.org/10.1109/TIT.2004.834854
  7. Y-C. Eun, H.-Y. Song, and G. Kyureghyan, '1-Error linear complexity over $F_{P}$of Sidelnikov sequences,' Lecture Notes in Computer Science, vol. 3486, Sequences and Their Applications 2004, Springer, pp. 154-165, Mar. 2005
  8. Y.-S. Kim, J.-S. Chung, J.-S. No, and H. Chung, 'Linear complexity over $F_{P}$ of Mary Sidel'nikov sequences,' ;제 15회 통신정보 합동학술대회 (JCCI 2005) 논문집, 대구, 2005년 4월, 제 15권, pp. 100
  9. Y.-S. Kim, J.-S. Chung, J.-S. No, and H. Chung, 'On the linear complexity over $F_{P}$ of Mary Sidel'nikov sequences,' in Proc. 2005 IEEE Inter. Symp. Inform. Theory, Adelaide, Australia, Sep. 2005, pp. 2007-2011
  10. R. E. Blahut, 'Transform techniques for error control codes,' IBM J. Res. Develop., vol. 23, pp. 299-315, May 1979 https://doi.org/10.1147/rd.233.0299
  11. P. J. Cameron, Combinatorics: topics, techniques, algorithms, Cambridge University Press, 1994