HE AFEERSE B o
®11% %6%, 2006, 12 2006-11-6-1-6

Live Sequence Chart HA|210{2] oo|2& Ho|

o] &g

Defining Semantics of Live Sequence Chart Specification

Eun-Young Lee *

o o}
409

AREAL FEAE-S She B3 V)% 7 AZEd] Al2RE Falsked ol AMgAle) RFE FMElw o
€ ML Alzgol AdE gske Wt F28 dolth wep AMgxle] 98E wem Fae olgske Aol 4
TAR aZEg] Al2ENE Sdsle Fa% di7t Huh o8 JiRle] 27 WA o] M= UML) Sequence
Diagram®& ¥&A 9l= Message Sequence Charts (MSC)& AUl de 713 2 ¥8st1 Qe dolaln & 4
T}, Live Sequence Charts (LSC)& MSC] 248 Fel2 wiAlx] 438}l Aue] 2.9 = HAo] 7lssitie 54
7RL gtk B =R 71Ee] drolde o] G LSC BAdole F8 AMAES BT B 4 9
= LSC BAdele] oriEg MEA Holstn =9sldnt. £ =RoA Fold ouiee sl HET vugs of
Y YL M99 LSC Aol E Tstm 9low, 189k AElEA sk 7129 LSC BA o] e 71 A
g3p Bt rhs AR S 7R3 sl

Abstract

While developing a complex reactive software system, it is very important to analyze the user requirement and
reflect it to the developed system. Therefore understanding the need of users precisely and promptly is the key to
the successful software system development. Among several requirement specification languages, message sequence
charts (MSCs), also known as sequence diagrams in UML are the most widely used scenario notation. Live
Sequence Charts (LSCs) are a variant of MSCs, characterized by its message abstraction facility and the modality
of scenarios. In this paper, I define the formal semantics of LSC specification including the essential language con-
structs such as pre—charts, variables, assignment and conditions. The range of the formalized LSC language has
been broadened, and the scope of the formalized semantics is much closer to the complete LSC specification.

» Keyword : UML, Message Sequence Charts, Scenario-based Language, Formal Specification,
Language Semantics

« M1x%} : ol2d

«®g 0 2006.11.01, AAKY © 2006.12.01, AlA22 @ 2006, 12.20

* goclxdetn AR A PFE LY ws

¥ B AT 20059% BHAANSE a7y A Il £ A

50 BB DFEBERSE ®mGE(2006. 12)

| . Introduction

While developing a large reactive software system, it is
very important to analyze the user’s requirement and re-
felct it to the developed system. Therefore understanding
the need of users precisely and promptly is the key to
successfui software development. Much research has been
recently done to make the communication between users
and system developers easier, resulting in several require-
ment specification languages (1).(2),(3],(4).

The Unified Modeling Language (UML) (5).(6).(7) is the
leading standard for specifying ohject oriented software
systems. Among various notations in UML, sequence dia-
grams are models that describe how groups of objects
collaborate in some behavior. Typically, a sequence dia-
gram captures the behavior of a single use case. The dia-
gram shows a number of example objects and the mes—
sages that are passed between these objects within the
use case. The sequence diagrams of UML, in fact, are a
variant, of classical message sequence charts (MSCs) (8).
MSCs are suffered from two serious shortcoming: they do
not provide message abstraction and they do not support
the modality of charts.

Live Sequence Chart (LSC) specification has extended
MSCs, overcoming those shortcomings. The LSC specifi-
cation is designed by Harel and Damm in (9],(10). The
LSC specification is a visual formalism based on specify-
ing the various kinds of scenarios of the system - includ-
ing those that are mandatory, those that are allowed but
not mandatory, or that are forbidden. MSCs can be
viewed as a subset of LSCs, the existential charts.

Visual formalism such as UML, MSCs and LSCs is a
very strong tool to visualize the design of a system,
specifying the behavior of a target system, or describing
user requirement. Visual formalism, however, is usually
suffered from the lack of formally defined semantics for
its own language. The LSC specification is not the ex-
ception for this deficiency.

In this paper, the formal semantics of LSC specification
is defined including the semantics of the essential lan-

guage constructs such as pre—charts, variables, assign-
ment, and conditions. Those language constructs are ex-
cluded in the previous work for simplicity or for other
reasons, but to enjoy expressiveness of LSC specification
in a full strength, those constructs should be used at de-
signing time and at verification time. The range of for-
malized language is broader than the previous work, and
much closer to the complete LSC semantics.

I discuss the related work on visual formalism and
formalizing the semantics of scenario-based languages in
Section 2. In Section 3, we provide a basic idea of the
LSC specification, focusing on its graphical notation.
Section 4 is devoted to explaining the core concepts of
the LSC specification. Section 5 describes the basic LSC
constructs formal semantics and how I extend the formal
semantics to express the other core LSC constructs in a
formal way. The benefits and the future work of the ap-
proach are discussed in Section 6.

Il. Related Work

Message Sequence Charts are widely used to describe
scenarios (11)].

user cruiser train trainHandler
poeenenes D T \
‘ AN
(' setDest D
departReq |
departAck
start
started
engage
Figure 1. LSC Universal Chart

O3 1. LSC HE XE

They are easy to understand with highlighting actor
interactions. Moreover, the MSC standard (8) provides a
structuring language, High-Level Message Sequence
Charts (HMSC), that makes it possible to compose sce-
nario through sequence, iteration, concurrency or choice.

Live Sequence Chart HAl2lol9] ojm 23 ¢ 51

In spite of all its advantages, MSCs suffer two serious
shortcomings: they do not allow message abstraction, and
they do not explicitly mention the status of each scenario.

Message abstraction makes it possible to state that on-
ly the messages appearing in the chart are relevant, omit-
ting all the other irrelevant messages. In Figure 1, the
scenario specifies only 4 participating objects and their
exchanging messages. Assuming there exists a clock for
synchrenization, and the clock sends messages about the
current time to the objects in the system. The scenario in
Figure 1 will remain silent when any of the ohject in the
scenario (for example, train) asks the clock for the current
time. The scenario does not disailow this kind of requests,
and those requests never cause any violation of the
scenario.

The status of the behavior described by the MSC is
not very clear: It is hard to tell whether a scenario is a
simple example (the systemn may sometimes behave like
that) or a universal rule (the system must behave as
specified, if a given condition is met).

The ability to abstract away irrelevant messages and
to specify the status of each scenario is a characteristic of
Live Sequence Charts (LSC). LSCs are a good alternative
for overcoming the shortcoming of MSCs. However, the
LSC specification still lacks in formally defined semantics
for its essential constructs.

Harel and Kugler proposed a way of synthesizing ob-
ject systems from LSC scenarios (12). But the language
they had used for synthesis is quite different from the
complete LSC specification in (8]. For example, Harel and
Kugler excluded pre—charts from their research, which are
considered as one of most prominent features of the LSC
language. Their language allows only simple message ex—
change with sacrificing all the other enriched language
constructs of LSCs, therefore the proposed algorithm can-
not handle anything more than messages.

Bontemps and Heymans adopts another variant of LSC
specification called High-level LSCs (HLSCs) for their
synthesis algorithm (13). HL.SCs are a variant of Harel
and Kugler's restricted LSCs, extended with composition
operators. Their HL.SC specification consists of three lay-
ers titled Basic Charts (BCs), Iterative Charts (ICs), and

Live Sequence Charts (L.SCs). However, Bontemps and
Heymans’ HLSC specification cannot be considered as a
subset of the current LSC specification because it has
quite different semantics and language constructs from the
complete LSC specification in (10). The HLSC specification
can be categorized as a new specification language, add-
ing the chart modality to an existing scenario-based
language. Bontemps and Heymans’ HLSC specification
and their synthesis algorithm do not support the enriched
language constructs of LSC specification, suffering from
the same shortcoming as Harel and Kuglers.

lll. Live Sequence Charts (LSC)

In this section, I introduce a train control system,
which will be used as an example to explain the main
ideas of the L3C specification. This system, in fact, is a
famous example which has been used to describe the
ideas and the semantics of LSC for a long time
(101,(12),(14).

Suppose an automated train control system which con-
trols the departure and arrival of trains between train
stations. There are several required behaviors for the au-
tomated trains (or the train control system) in order for
the safe transport of passengers to be guaranteed. Those
requirements can be specified using LSCs.

Figure 1 describes the requirement which a train de-
parting from a train station must follow. The objects par—
ticipating in this scenario are user, cruiser, train,
trainHandler. The chart describes the message communi-
cation between the objects, with time propagating from
top to bottom. An LSC consists of two parts: a prechart
and a main chart. Any message sequence in the main
chart can happen if and only if the message sequence in
the pre—chart occurs before it. The pre—chart is shown in
the upper part of the chart in dashed line-style, it can be
considered as a precondition that must be satisfied before
any message sequence occurs in the main chart. The
chart of Figure 1 is called an universal chart. If a system
satisfies an LSC universal chart, and if the pre-chart of
the universal chart is satisfied (i. e. the message sequence

52 &E AfeEHREe wmEs(2006. 12))

of the pre-chart has occurred), every run of the system
must satisfy the main part of the universal chart.

proxSensor cruiser train trainHandler
S n
’ \
! artivReq Y
i A
¢ ,
K arrivAck s
i |alenSiop E
. disengage :
; stop .

Figure 2. LSC Existential Chart
T8 2. LSC 88 A=

Whenever the train receives the message setDest from
the user, the sequence of messages in the chart should
occur in the following order: the train sends a departure
request departReq to the trainHandler, which sends back
a departure acknowledgement departAck to the train. The
train then sends a start message to the cruiser in order
to activate the engine, and the cruiser responds by send-
ing the started message to the train. Finally, the train
sends an engage message to the cruiser, and then the
train can depart from the train station.

Figure 2 and Figure 3 are existential charts, depicted
by dashed borderlines. Those existential charts describe
two possible scenarios in which a train approaches a train
station: stop at the train station or pass through the sta-
tion without stopping.

train trainHandler

arrivReq '

' arrivAck ;

departReq

E departAck

Figure 3. L.SC Chart
T8l 3. LSC A& ol

Any system satisfying an existential chart must has at
least one system run, in which if the pre—chart of the ex-

istential chart holds, then the main part is satisfied. Two
charts show what could happen after the train sends an
arriving request arrivReq to the trainHandler, and gets an
acknowledge arrivAck from the trainHandler. If the train
is going to stop at the station, the message sequence de-
picted at the main part of Figure 2 will occur. If the train
is going to pass through the station, the sequence of
messages in Figure 3 will occur. It is impossible for every
system run of a system to satisfy both of two existential
charts. An existential chart, however, are considered to be
satisfied if there exists at least one system run corre-
sponding to the chart. In an iterative development of LSC
specifications, such existential charts may be considered
underspecified, and can be refined and be transformed into
universal charts at the later part of development.
Existential charts are also used as testing scenarios after
a system is implemented with LSC specifications. This
explains the modality of scenarios which the LSC specifi-
cation provides.

V. LSC Concepts

The complete semantics of the LSC language is defined
in (10, and I explain the basic definitions and concepts of
the language with the automated train control system of
the previous section. The formal semantics of LSC lan-
guage is given in Section 5.

Figure 4 is the same to the chart shown in Figure 1,
but it is labeled with the locations of the objects. The
set of locations for the chart is as follows:

{Cuser,0),(user, 1) {cruiser,0>,{cruiser.1) {cruiser,2).

{cruiser,3) {train,0) train,1) {train,2) train,3),

{train,4) {train,5) {train,6) (trainHandler,0,

{trainHandler,1), {trainHandler,2)}

The chart defines a partial order < ,, on locations.
The requirement for order along an instance line im-
plies, for example, {train,0> < ,<train,1>. The order is
also caused by sending and receiving messages, for ex-
ample, {train,2) < ,{trainHandler,1>. The partial or-

der ¢, is transitive, so from the transitivity, another

order {train,0) <, {trainHandler,1> can be induced.

Live Sequence Chart B4 1oe] 2Jn| &3 A9 53

< 1 setDest i J

2 departReq o

3 departAck

I ostant 4

2 started N

3 engage 6

Figure 4. LSC Chart with Locations
3 4. AE xPF EAIE LSC RE

One of the basic concepts of LSC specification is the
notation of a cut. A slice in a chart is defined as a tuple
consisting of one location of each participating object. A
set of cuts for an L.SC chart is a subset of slices in the
chart. Intuitively a cut through a chart represents the
progress each instance has made in the scenario. Not ev-
ery slice is a cut. For example, the slice ({cruiser, 1),
(train, 37, {trainHandler, 2)) is not a cut. Before the
cruiser receives a message start from the train, the train
must send the message. It requires the train should have
already reached the location {train, 4).

The cuts for the chart in Figure 5 are:

{({user,0), {cruiser,0) {train,0) {trainHandler,0}),
(Cuser. 1>, {cruiser,0) {train,0),{trainHandler,0),
(Cuser, 1>, {cruiser,0) {train,1){trainHandler,0)),
(Cuser, 1>, {cruiser,0) {train,2) {trainHandler,0)),
((user, 1), {cruiser,0){train,2) {trainHandler,1)),
(Cuser.1). {cruiser,0) {train,2) {trainHandler,2)),
(Cuser, 1>, {cruiser,0) {train,3) {trainHandler,2)),
(Cuser, 1), {cruiser,0),{train,4) (trainHandler,2)),
(user, 1>, {cruiser,1) {train,4> {trainHandler 2)),
(Kuser, 1), {cruiser,2) {train,4 trainHandler,2)),
((user.1>, {cruiser,2){train,5) {trainHandler,2)),
(Cuser.1), {cruiser,2) {train.6) {trainHandler,2)),
(Cuser,1>, {cruiser,3){train,6) {trainHandler,2))}

The run of a chart consists of a sequence of cuts ar-
ranged by the order in which the messages are sent. The

trace of a run shows the sequence of messages which
are sent and received during the execution of the run. A
trace is an ordered set of pairs such that each of the
pairs consists of the instance which initiates a message,
and the sent message. The trace of the chart in Figure 5
is:
{(user, train.setDest),

(train, trainHandler.departReq),

(trainHandler, train.departAck),

(train, cruiser.start), (cruiser, train.started),

(train, cruiser.engage)}

As part of the “liveness” property, the LSC language
enables forcing progress along an instance line. Each lo-
cation, or each message can have a temperature cold or
hot. The temperature of a location is depicted by dashed
or solid segments of the instance line. A run must con-
tinue down solid lines, while it may continue down dashed
lines. The temperature of a message is graphically de-
noted by dashed or solid arrows between instance lines.
Sending a hot message means the message delivery must
happen. That is, the message will eventually get to the
receiver of the message. Unlike hot messages, the deliv~
ery of cold messages are not guaranteed, therefore cold
messages can be missing during delivery. The system
satisfying an LSC specification should take this into
consideration. By the definition of LSC language, all the
locations at the last cut in a run should be cold.

V. Formal Semantics of LSC Language

This section defines the formal semantics of LSC lan-
guage in (10). The complete LSC language is quite com-
plex and versatile, and this expressiveness makes LSC
language a useful tool to depict scenarios for a system
development. Few research has been conducted for for-
malizing the semantics of LSC language, and only re-
stricted and simplified version of the language was used
for the recent researches (12],(13). In the simplified ver-
sion, they did not consider pre—charts, variables, or
conditions. Although using restricted version made the re-
search simple and easily understandable, it significantly

54 B FFEFEHRLE HGEE(2006. 12.)

diminishes the expressive power of LSC language. I define
the semantics of LSC language which include those es-
sential language constructs (modality, pre-charts, variables,
assignment, and conditions) as well as other language
constructs which were already tackled in the restricted
version of the language. It is assumed that all messages
are synchronous and that there are no failures in the
system.

5.1 Basic Definitions

A chart of LSC specification is a tuple of its mode, a
set of messages and a set of conditions. The mode of a
chart specifies whether a chart is universal or existential.

Chart= Modex Set{ Message)* Set(Condition)
Mode = { Universal, Existential }

The messages and the conditions are the contents de-
picted in the chart, and their formal semantics will be
discussed later in this section.

The system related to an LSC specification is usually
composed of a set of objects, and the objects are called
instances. They are entities interacting with each other in
a chart, and graphically denoted as vertical lines in a
chart. LSCs specify the behavior of a system in terms of
the message communication between the instances in the
system. For a chart m, inst(m) is the set of all in-
stance-identifiers referred to in the chart. With each in-
stance i, a finite number of locations are assigned

loc{m,)<{0, ..., max (i)}. The set of all loca-

tions of a chart m is:

loc{m) ={<i, D| icinst(m) N\ I loc(m, 1)}

We will call loc(m) Locations. Each location in the
chart m has been associated with its temperature as ex-
plained in Section 4. A mapping temp can be defined for
the temperature of a location as follows:

temp(m): loc(m) — Temp

where the set Temp = { hot, cold}.
An object usually maintains variables which keep its
internal state. Some variables are visible to other ohjects

while others are kept in private. The instances of an LSC
chart, as an abstraction of objects, maintain variables for
the same purpose. We call a visible variable of an in-
stance Property. Let properties(m) be the set of all prop-
erty-identifiers in chart m. Each variable is associated
with its domain, i. e. the range of values the variable
could have. Let domain(p) be the domain set of the prop-
erty p.

When a system is specified using the LSC language
before development, the resulting LSC specification usually
ends up with more than one charts. In order to analyze
the charts or synthesize a state machine out of charts, it
is needed to keep track of all the variables of given
charts. We define a mapping which returns &ll visible
variables:

Dproperties gopai Sel Chart)— Set(Pr operty)
An event appearing in chart mis a tuple of five parts:

Event = loc(m) xZx loc(m)x Propertyx Values

where (<, 0,0,<{i,[I’>, p,v) corresponds to in-
stance I at location I, sending a string o to in-
stance i’ at location I”. The string o is an identifier
standing for the sent message, and the message
changes the value of property p into the value v.
The property p must be the variable of instance i’,
and must be visible to other instances. Let
event(m) be the set of events appearing in chart
m.

Finally, the messages in chart m are pairs:

Message(m) = Event(m) x Temp

Let msg(m) be the set of messages appearing in chart
m. Each location can appear in at most one message in
the chart, and each message is associated with its
temperature. The function temp is defined polymiorphically

for mapping a message to its temperature as follows:

temp(m): Message(m) — Temp

52 Cuts

A cut c is specified by the locations, one for each in-

Live Sequence Chart HAdlole] oJu 23 79 55

stance in the chart:

e =i I). <iglyd, .o iy l,D)
Harel (10)

{i, I containing all elements in the domain of a

defined the preset of a location

chart smaller than (j, §:

preset(<i, D)={7, I'>€ loc(m) <7, I'>< i, D}

where the partial order < is defined as follows:

® order along an instance line:

VGl Eloc(m), 1<, =G0 <, G1+1)

® order induced from message sending:

vmEmsg(m). m=({4,1>,0,<¢,I' >, ** hot) =
G D

® messages blocking sender until receipt:

VYmEmsglm). m=({3,01>,0,<,l' >, *,* hot) =
U=, Gl+1)

As we mentioned before, all the slices in a chart are
not cuts. A cut ¢ through chart mis a set of locations
such that for every location <z > in the cut ¢
the preset of ¢ does not include any location

<j, I'> satisfying <(j, /=< ,<j, I'> for some loca-

tion <j,/,> in c. The initial cut of a chart denotes
a cut in which all the instances are at Location 0.
The final cut of a chart is a cut in which the loca~
tion of each instance in the chart is its last
location. Let initialCut(m) return the initial cut of
chart m, and let finalCut(m) return the final cut of
chart m.

For chart m, some 1< ;<% and cuts ¢, ¢/, with

c= (i 1D <ig o>, . 0 i l,D)
= (i 1>, <ig 0y, o i, 0,0,

sucm (¢,<i;{;», ¢’) holds if ¢ and ¢’ are both
cuts, and if [;= I, +1AVEE). [,=1,.

We denote the cutAdvance of a chart m, a cut cand a
(K4, 1,0,4j,12, %, %, hot)
the next cut ¢’, which can be reached from the cut ¢
when the message (<i7,7,>,0,<j, 1>, %, %, hot) is

message returning

received in chart m. An instance in an LSC chart can
send messages to itself (called self messages), and the
next cut at receiving a self message is different from
the next cut at receiving a general message. Within a
system satisfying some LSC specifications, the charts
can be activated more than once. That means, if the
system run reaches at the final cut ¢ of chart m, then
the next cut of ¢’ will be the initial cut of chart m.
The chart m will get activated again if the first mes-
sage in the pre-chart of m occurs.

The mapping cutAdvance is defined as follows:

® self messages: ;= A/, =/,

cut Advance (m,c, ((i1,>,0,(j,1;), % , % ,hot)) =

P s suey(e, <4 lY,c)
initial Out (m): 3¢ sucy(c, {i,1;),¢) A e = final Cut (m)

® general message: i+ ;
cut Advance (m,c,({5,0;>,0,{4,1;), %, % ,hot)) =
) S 3 sucp(e, L), YA
T sue,(d (i)
3. 3" suey(e, (4,0, A

suc, (¢, <41y, ¢ YA
¢ = final Cut(m)

[+

initial Out (m)

5.3 Environments

The formal semantics explained in this subsection are
closely related to the LSC language constructs for han-
dling variables, assignment, and conditions. First, I in-
troduce Context that formally describes the semantics for
variables, and then explain how to express conditions in
terms of the semantics of LSC language.

The valuation of a variable is a pair of variable name
and its value. For example, (x, 3) and
(trainHandler.depRequested, 0) are valuations.

Context is denoted as a set of valuations. A context
cannot be a multi-set, i. e. a context contains only one
valuation for each variable. The set domain(p) is the finite
set of possible values which the variable p can have. For
example, domain(p) = {0. 1} if the variable p is of boolean
type. The mapping contexts(m) returns a set of contexts,
containing all possible contexts of chart m. It is defined
as:

56 @E AFEHEREE WoGEE(2006. 12.)

contexts(m) =

{{((Elgvl)i""(znﬂvn)}’

fori=1,...,n, ¢, Eproperties(m) A
v,Edomain(p),

For a context I” we define a new context /7, an
x-variant of /7 Intuitively an x-variant of /"is a context
which has a different valuation for the variable x, but not
anything else.

variant ([, I x) =

Two context are equivalent in term of variable x, if
they agree with the value of x. The mapping x-equiv-

alence is:
=, (O, M=30.(x,eN)A{x,1)el")

A context /"can be extended with a variable x unless
the context /"already contains the valuation of the varia-
ble x. The x-extension of a context /"is a set of con-
texts defined as follows:

extend(r;2) = {PU e, N O L0

5.4 Conditions and States

A condition in a chart is denoted as a tuple of a cut
before the condition, a cut after the condition, and its
conditional expression. The LSC specification allows only
propositional formulae in a conditional expression.

Condition = Cutx CutxFormula

Each cut in an LSC chart is associated with a context
of visible properties. States in an LSC chart are pairs of
a cut and a context. The context could be an empty set if
there is no visible properties in the chart.

State = Cutx Context

The mapping stateEquiv returns a set of states,
equivalent in term of a cut c¢ in chart m. All the states of
the set are for the cut ¢, but they have different contexts

for visible properties.

stateEquiv(m, c)={ (¢, T)|T € contexts(m)}

VI. Conclusion

Visual formalism with graphical notations is very use~
ful for analyzing user requirements, and for communica~-
tion between clients and developers. UML is one of the
most, successful requirement specification languages, and
sequence diagrams are one component of UML used for
describing the behavior of a system. The LSC specifica-
tion is an extended variant of MSCs (a predecessor of
sequence diagrams), giving more expressiveness and cor—
rectness to scenarios. The LSC specification, however, has
been suffered from the lack of formal semantics like other
requirement specification languages.

In this paper, the formal semantics of LSC specification
has been defined including the semantics of the essential
language constructs such as pre-charts, variables, and
conditions, which were excluded from the previous re-
search on L3Cs. The range of the formalized LSC lan-
guage has been broadened, and the scope of the for-
malized semantics is much closer to the complete LSC
specification.

Automatic synthesis of software system out of graph-
ical requirement, specification is another interesting re-
search topic in requirement analysis. I think the formal
semantics in this paper will be of great help for finding a
way of synthesizing a system from enriched scenario
based languages like LSCs.

References

(1] D. Harel. Statecharts: a visual formalism for com-
plex systems. Science of Computer Programming,
8:231-274, 1987.

(2) J. Coplien and D. Schmidt. Pattern Languages of
Program Design. Addison-Wesley, 1995.

(3) P. Kruchten. The Rational Unified Process: An

Live Sequence Chart BA91019] 2Ju &34 A9 57

Introduction. Addison-Wesley, 1999.
(4) G. Schneider and J. Winters. Applying Use Cases:
A Practical Guide. Addison-Wesley, 1998.
{5] G. Booch, J. Rumbaugh, and I. Jacobson. The
Guide.
edition,

User
Ist

Unified Modeling Language
Addison-Wesley
September 1998.

(6) UML. Documentation of the Unified Modeling
Langauge (UML). Available from the Object
Management Group (OMG),
http://www.omg.org

(7] UML Distilled. M. Fowler and K. Scott. 2nd
Edition. Addison-Wesley. 1999.

(8] ITU-TS recommendations Z.120: Message se-
quence chart, (MSC). http://www.itu.int/, 1996.

(9] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. Formal Methods in
System Design, 19(1):45-80, 2001.

{10) D. Harel and R. Marelly. Come, Let’s Play:

Scenario-Based Programming Using LSCs and

the Play Engine. Springer, 2003.

D. Amyot and A. Eberlein. “An Evaluation of

Notations

Professional,

(11]

Scenario for Telecommunication
Systems Development.” In Proc. of 9th Int.
Conference on Telecommunication Systems
(9ICTS), Dallas, USA, March 2001.

D. Harel and H. Kugler.

state-based object systems from lsc specifications.

(12) Synthesizing
International Journal of Foundations of
Computer Science, 13(1):5-51, February 2002.

(13) Y. Bontemps and P. Heymans. Turning high-level
live sequence charts into automata. In Proc. of
Scenarios and State-Machines: models, algo—
rithms and tools workshop of the 24th Int. Conf.
on Software Engineering, Orlando, FL, May 2002.

(14) D. Harel and E. Gery, "Executable Object
Modeling with Statecharts”, IEEE Computer
(July 1997), pages 31-42,

(15) D. 1. Cohen. Introduction to Computer Theory.
Wiley, 1996.

(16) J. Drissi and G. v. Bochmann. Submodule con-

In Proc.

struction tool. of International

Conference on Computational Intelligence for
Modelling, Control and Automation, pages
319-324, Vienne, February 1999. 108 Press.
{17) Z. P. Tao, G. Bochmann, and R. Dssouli. A model
and an algorithm of subsystem construction. In
Proc. of the Eighth International Conference on
Parallel and Distributed Computing Systems,

pages 619-622, Orlando, Florida, USA,
September 1995.
(A a))
ey
2004 Ph. D. in Computer
Science,
Department of

Computer Science,
Princeton University,
U. S. A

20059 ~ @Al ¢ AN
et} Hd7At

(&8P Computer Security,
Programming Language,
Compiler

