DOI QR코드

DOI QR Code

The Effect of Cr Dosage on FePt Nanoparticle Formation

  • Won, C. (Material Science Division, Argonne National Laboratory) ;
  • Keavney, D.J. (Advanced Photon Source, Argonne National Laboratory) ;
  • Divan, R. (Center for Nanoscale Materials, Argonne National Laboratory) ;
  • Bader, S.D. (Material Science Division, Argonne National Laboratory)
  • Published : 2006.12.31

Abstract

The search for high-density recording materials has been one of most active and vigorous field in the field of magnetism. $FePt-L1_{0}$ nanoparticle has emerged as a potential candidate because of its high anisotropy. In this paper, we provide an overview of recent work at Argonne National Laboratory that contributes to the ongoing dialogue concerning the relation between structure and properties of the FePt nanoparticle system. In particular we discuss the ability to control structure and properties via dosing with Cr. Cr-dosed FePt films were grown via molecular beam epitaxy and annealed at $550^{\circ}C$ in an ultrahigh vacuum chamber, and were studied with the surface magneto-optic Kerr effect (SMOKE), scanning electron microscopy (SEM) and x-ray magnetic circular dichroism (XMCD). We found that small dosage of Cr helps to generate $L1_{0}$ phase FePt magnetic nanoparticles with small size, defined shape and regular spatial distribution on MgO (001) substrate. The nanostructures are ferromagnetic with high magnetic coercivity (${\sim}0.9T$) and magnetic easy axis in the desired out-of-plane orientation. We also show that controlling the lateral region where nanostructures exist is possible via artificial patterning with Cr.

Keywords

References

  1. M. Yu, Y. Liu, A. Moser, D. Weller and D. J. Sellmyer, Appl. Phys. Lett. 20, 3992 (1999)
  2. B. M. Lairson, M. R. Visokay, R. Sinclair, and B. M. Clemens, Appl. Phys. Lett. 62, 639 (1993) https://doi.org/10.1063/1.108880
  3. A. Cebollada, D. Weller, J. Sticht, G. R. Harp, R. F. C. Farrow, R. F. Marks, R. Savoy and J. C. Scott, Phys. Rev. B 50, 3419 (1994) https://doi.org/10.1103/PhysRevB.50.3419
  4. M. R. Visokay and R. Sinclair, Appl. Phys. Lett. 66, 1692 (1995) https://doi.org/10.1063/1.113895
  5. R. F. C. Farrow, D. Weller, R. F. Marks, M. F. Toney, A. Cebollada and G. R. Harp, J. Appl. Phys 79, 5967 (1996) https://doi.org/10.1063/1.362122
  6. R. A. Ristau, K. Barmak, L. H. Lewis, K. R. Coffey, and J. K. Howard, J. Appl. Phys. 86, 4527 (1999) https://doi.org/10.1063/1.371397
  7. T. Itoh, T. Kato, S. Iwata, and S. Tsunashima, IEEE Trans. Magn. 41, 3217 (2005) https://doi.org/10.1109/TMAG.2005.854782
  8. Y. Huang. H. Okumura. G. C. Hadjipanayis, D. Weller, J. Magn. Magn. Mater. 242-245, 317 (2002) https://doi.org/10.1016/S0304-8853(01)01227-6
  9. T. Shima, T. Moriguchi, S. Mitani, K. Takanashi, H. Ito and S. Ishio IEEE Trans. Magn. 38, 2791 (2002) https://doi.org/10.1109/TMAG.2002.803102
  10. S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000) https://doi.org/10.1126/science.287.5460.1989
  11. B. Rellinghaus, S. Stappert, M. Acet, and E. F. Wassermann, J. Magn. Magn. Mater. 266, 142 (2003) https://doi.org/10.1016/S0304-8853(03)00465-7
  12. Y. Sasaki, M. Mizuno, A. C. C. Yu, M. Inoue, K. Yazawa, I. Ohta, M. Takahashi, B. Jeyadevan, and K. Tohji, Magn. Magn. Mater. 282, 122 (2004) https://doi.org/10.1016/j.jmmm.2004.04.029
  13. Y. Zhang, J. Wan, M. J. Bonder, G. C. Hadjipanayis, and D Weller, J. Appl. Phys. 93, 7175 (2003) https://doi.org/10.1063/1.1558232
  14. A. C. C. Yu, M. Mizuno, Y. Sasaki, M. Inoue, H. Kondo, I. Ohta, D. Djayaprawira, and M. Takahashi, Appl. Phys. Lett. 82, 4352 (2003) https://doi.org/10.1063/1.1584791
  15. M. Chen, K. Kuroishi, and Y. Kitamoto, IEEE Trans. Magn. 41, 3376 (2005) https://doi.org/10.1109/TMAG.2005.855350
  16. T. Saito, O. Kitakami, and Y. Shimada, J. Magn. Magn. Mater. 239, 310 (2002) https://doi.org/10.1016/S0304-8853(01)00595-9
  17. J. P. Liu, Y. Liu, C. P. Luo, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys 81, 5644 (1997) https://doi.org/10.1063/1.364681
  18. M. F. Toney, W. Y. Lee, J. A. Hedstrom, and A. Kellock, J. Appl. Phys. 93, 9902 (2003) https://doi.org/10.1063/1.1577226
  19. T. Shima, T. Moriguchi, S. Mitani, and K. Takanashi, Appl. Phys. Lett. 80, 288 (2002) https://doi.org/10.1063/1.1432446
  20. J. P. Chu, T. Mahalingam and S. F. Wang, J. Phys: Condens. Matter 16, 561 (2004) https://doi.org/10.1088/0953-8984/16/4/005
  21. P. C. Kuo, Y. D. Yao, C. M. Kuo, and H. C. Wu, J. Appl. Phys. 87, 6146 (2000) https://doi.org/10.1063/1.372637
  22. Z. L. Zhao, J. S. Chen, J. Ding, Y. B. Yi, B. H. Liu and J. P. Wang, IEEE Trans. Magn. 41, 3337 (2005) https://doi.org/10.1109/TMAG.2005.855204
  23. T. Maeda, T. Kai, A. Kikitsy, T. Nagase, and J. Akiyama, Appl. Phys. Lett 80, 2147 (2002) https://doi.org/10.1063/1.1463213
  24. C. J. Sun, G. M. Chow, and J. P. Wang, Appl. Phys. Lett. 82, 1902 (2003) https://doi.org/10.1063/1.1563049
  25. Y. Zhang, J. Wan, M. J. Bonder, G. C. Hadjipanayis, and D. Weller, J. Appl. Phys. 93, 7175 (2003) https://doi.org/10.1063/1.1558232
  26. J. Wan, Y. Huang, Y. Zhang, M. J. Bonder, G. C. Hadjipanayis, and D. Weller, J. Appl. Phys 97, 10J121 (2005) https://doi.org/10.1063/1.1855709
  27. T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004) https://doi.org/10.1063/1.1794863
  28. T. Shima, K. Takanashi, Y. K. Takahashi and K. Hono, Appl. Phys. Lett. 88, 063117 (2006) https://doi.org/10.1063/1.2172710
  29. Y. Zhang, J. Wan, V. Skumryev, S. Stoyanov, Y. Huang, G. C. Hadjipanayis, and D. Weller, Appl. Phys. Lett. 85, 5343 (2004) https://doi.org/10.1063/1.1827348
  30. T. Shima, K. Takanashi, Y. K. Takahashi, K. Hono, G. Q. Li and S. Ishio, J. Appl. Phys. 99, 033516 (2006) https://doi.org/10.1063/1.2169878