DOI QR코드

DOI QR Code

LED용 BaGa2S4:Eu2+ 녹색 형광체의 합성 및 발광특성

Synthesis and Luminescent Characteristics of BaGa2S4:Eu2+ Green Phosphor for Light Emitting Diode

  • 김재명 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 박정규 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 김경남 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 이승재 (한국화학연구원 화학소재연구부 형광물질연구팀) ;
  • 김창해 (한국화학연구원 화학소재연구부 형광물질연구팀)
  • Kim, Jae-Myung (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Park, Joung-Kyu (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Kyung-Nam (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Seung-Jae (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Chang-Hae (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 발행 : 2006.12.27

초록

[ $II-III_2-(S,Se)_4$ ] structured of phosphor has been used at various field because those have high luminescent efficiency and broad emission band. Among these phosphors, the europium doped $BaGa_2S_4$ was prepared by solid-state method and had high potential application due to an emissive property of UV region. Also, the common sulfide phosphors were synthesized by using injurious $H_2S\;or\;CS_2$ gas. However, in this study $BaGa_2S_4:Eu^{2+}$ phosphor in addition to excess sulfur was prepared under at 5% $H_2/95%\;N_2$ reduction atmosphere. Thus, this process could be considered as large scale synthesis because of non-harmfulness and simplification. The photoluminescence efficiency of the prepared $BaGa_2S_4:Eu^{2+}$ phosphor increased 20% than that of commercial $SrGa_2S_4:Eu^{2+}$ phosphor. The prepared $BaGa_2S_4:Eu^{2+}$ could be applied to green phosphor for white LED of three wavelengths.

키워드

참고문헌

  1. T. E. Peters and J. A. Baglio, J. Electrochem. Soc., 119, 230 (1972) https://doi.org/10.1149/1.2404167
  2. P. C. Donohue and J. E. Hanlon, J. Electrochem. Soc., 121, 137 (1974) https://doi.org/10.1149/1.2396807
  3. L. Eichenauer, B. Jarofke, H. C. Mertins, J. Dreyhsig, W. Busse, H. E. Gumlich, P. Benalloul, C. Barthou, J. Benoit, C. Fouassier and A. Garcia, Phys. Stat. Sol. A, 153, 515 (1996). https://doi.org/10.1002/pssa.2211530227
  4. P. Benalloul, C. Barthou and J. Benoit, J. Alloy and Comp., 275-277, 709 (1998) https://doi.org/10.1016/S0925-8388(98)00422-8
  5. F. Sh. Aidaev, Inorg. Mater., 39, 96 (2003) https://doi.org/10.1023/A:1022126125109
  6. Y. D. Jiang, G Villalobos, J. C. Souriau, H. Paris, C. J. Summers and Z. L. Wang, Solid State Commun., 113,475 (2000) https://doi.org/10.1016/S0038-1098(99)00493-7
  7. S. Yang, C. Stoffers, F. Zhang, S. M. Jacobsen, B. K. Wagner and C. J. Summers, Appl. Phys. Lett., 72, 158 (1998) https://doi.org/10.1063/1.120674
  8. M. R. Davolos, A. Garcia, C. Fouassier and P. Hagenmuller, J. Solid State Chem., 83, 316 (1989) https://doi.org/10.1016/0022-4596(89)90181-3
  9. S. Nakamura and G Fasol, 'The Blue Laser Diode' Springer, Berlin, 343 (1996)
  10. Y. Narukawa, I. Niki, K. lzuno, M. Yamada, Y. Murazaki and T. Mukai, Jpn. J. Appl. Phys., 41, 371 (2002) https://doi.org/10.1143/JJAP.41.L371
  11. Y. Uchida and T. Taguchi, Proc. SPIE., 4996, 166 (2003) https://doi.org/10.1117/12.476568
  12. R. D. Shannon, Acta Cryst., A32, 751 (1976) https://doi.org/10.1107/S0567739476001551
  13. D. L. Dexter and J. H. Schulman, J. Chem. Phys., 22, 1063 (1954) https://doi.org/10.1063/1.1740265