DOI QR코드

DOI QR Code

Sn Filling Effects on the Thermoelectric Properties of CoSb3 Skutterudites

Skutterudite CoSb3의 열전특성에 미치는 Sn의 충진효과

  • Jung, Jae-Yong (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Ur, Soon-Chul (Department of Materials Science and Engineering/ReSEM, Chungju National University) ;
  • Kim, Il-Ho (Department of Materials Science and Engineering/ReSEM, Chungju National University)
  • 정재용 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 어순철 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터) ;
  • 김일호 (충주대학교 신소재공학과/친환경 에너지 변환.저장소재 및 부품개발 연구센터)
  • Published : 2006.09.27

Abstract

Sn-filled $Co_8Sb_{24}$ skutterudites were synthesized by the encapsulated induction melting process. Single ${\delta}-phase$ was successfully obtained by subsequent annealing and confirmed by X-ray diffraction analysis. Temperature dependences of Seebeck coefficient, electrical resistivity and thermal conductivity were examined from 300 K to 700 K. The positive Seebeck coefficient confirmed the p-type conductivity of the Sn-filled $Co_8Sb_{24}$. Electrical resistivity increased with increasing temperature, which shows that the Sn-filled $Co_8Sb_{24}$ skutterudite is a highly degenerate semiconductor. Thermal conductivity was reduced by Sn-filling because the filler atoms acted as phonon scattering centers in the skutterudite lattice. Thermoelectric figure of merit was enhanced by Sn filling and its optimum filling content was considered to be $z{\leq}0.5$ in the $Sn_zCo_8Sb_{24}$ system.

Keywords

References

  1. H. J. Goldsmid, CRC Handbook of Thermoelectrics, edited by D. M. Rowe (CRC Press,1995) p.19
  2. G. A. Slack, ibid. in ref. 1, p.407.
  3. R. Venkatasubramanian, E. Siivola, T. Colpitts and B.O'Quinn, Nature, 413, 597 (2001) https://doi.org/10.1038/35098012
  4. G.A. Slack and V.G. Tsoukala, J. Appl. Phys., 76, 1665 (1994) https://doi.org/10.1063/1.357750
  5. J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang and T. Hirai, J. Appl. Phys., 91, 3698 (2002) https://doi.org/10.1063/1.1450036
  6. M. Puyet, B. Lenoir, A. Dauscher, P. Weisbecker and S.J. Clarke, J. Sol. Stat. Chem., 177, 2138 (2004) https://doi.org/10.1016/j.jssc.2004.02.010
  7. D. T. Morelli, G. P. Meisner, B. Chen, S. Hu and C. Uher, Phys. Rev., B 56, 7376 (1997) https://doi.org/10.1103/PhysRevB.56.7376
  8. G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M.A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang and G.S. Nolas, Appl. Phys. Lett., 80, 598 (2002) https://doi.org/10.1063/1.1433911
  9. G. S. Nolas, J. L. Cohn, and G. A. Slack, Phys. Rev., B58, 164 (1998) https://doi.org/10.1103/PhysRevB.58.164
  10. N. R. Dilley, E. D. Bauer, M. B. Maple and B.C. Sales, J. Appl. Phys., 88, 1948 (2000) https://doi.org/10.1063/1.1305837
  11. G.S. Nolas, D.T. Morelli and T.M. Tritt, Ann. Rev. Mater. Sci., 29, 89 (1999) https://doi.org/10.1146/annurev.matsci.29.1.89
  12. S.-W. You, J.-Y. Jung, S.-C. Ur and I.-H. Kim, Kor. J. Mater. Res., 16, 312 (2006) https://doi.org/10.3740/MRSK.2006.16.5.312
  13. H. Takizawa, K. Miura, M. Ito, T. Suzuki, and T. Endo, J. Alloys & Comp., 282, 79 (1999) https://doi.org/10.1016/S0925-8388(98)00802-0
  14. X. Shi, W. Zhang, L.D. Chen and.J. Yang, Phys. Rev. Lett., 95, 185503 (2005) https://doi.org/10.1103/PhysRevLett.95.185503
  15. J. W. Sharp, E. C. Jones, R. K. Williams, P. M. Martin and B. C. Sales, J. Appl. Phys., 78, 1013 (1995) https://doi.org/10.1063/1.360402
  16. D.T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, J.Vandersande, B. Chen, and C. Uher, Phys. Rev., B51, 9622 (1995) https://doi.org/10.1103/PhysRevB.51.9622