DOI QR코드

DOI QR Code

소결온도가 ZPCCL계 바리스터의 전기적, 유전적 안정성에 미치는 영향

Sintering Temperature Effect on Electrical and Dielectric Stability of ZPCCL-Based Varistors

  • 남춘우 (동의대학교 전기공학과)
  • Nahm, Choon-Woo (Department of Electrical Engineering, Dongeui University)
  • 발행 : 2006.08.27

초록

The electrical, dielectric properties, and its stability of ZPCCL-based varistors were investigated for different sintering temperatures in the range of $1230{\sim}1300^{\circ}C$. As the sintering temperatures increased, the varistor voltage decreased in the range of $777.9{\sim}108$ V/mm, the nonlinear coefficient decreased in the range of $77.9{\sim}7.1$, and the leakage current increased in the range of $0.3{\sim}50.6\;{\mu}A$. The stability of electrical and dielectric characteristics was obtained from sintering temperature of $1260^{\circ}C$. the varistors sintered at $1260^{\circ}C$ marked the high electrical and dielectric stability, with $%{\Delta}{V_{1mA}=+1.9%,\;%{\Delta}{\alpha}=-10.6%,\;%{\Delta}I_L=+20%\;and\;%{\Delta}tan\;{\delta}=+9.9%$ for DC accelerated aging stress state of $0.95V_{1mA}/150^{\circ}C$/24 h.

키워드

참고문헌

  1. L. M. Levinson and H. R. Philipp, Amer. Ceram. Soc. Bull., 65, 639 (1986)
  2. T. K. Gupta, J. Am. Ceram. Soc., 73, 1817 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05232.x
  3. K. Mukae, K. Tsuda, and S. Shiga, IEEE Trans. Pow. Deliv., 3, 591 (1988) https://doi.org/10.1109/61.4296
  4. S. Shichimiya, M. Yamaguchi, N. Furuse, M. Kobayashi, and S. Ishibe, IEEE Trans. Pow. Deliv., 13, 465 (1998) https://doi.org/10.1109/61.660916
  5. K. Mukae, Am. Ceram. Soc. Bull., 66, 1329 (1987)
  6. A. B. Alles and V. L. Burdick, J. Appl. Phys., 70, 6883 (1991) https://doi.org/10.1063/1.349812
  7. A. B. Alles, R. Puskas, G. Callahan and V. L. Burdick, J. Amer. Ceram. Soc., 76,2098 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb08339.x
  8. Y.-S. Lee, K.-S. Liao and T.-Y. Tseng, J. Amer. Ceram. Soc., 79, 2379 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08986.x
  9. C.-W. Nahm, Mater. Lett., 47, 182 (2001) https://doi.org/10.1016/S0167-577X(00)00262-7
  10. C.-W. Nahm, J. Mater. Sci.: Mater. Electron., 15,29 (2004) https://doi.org/10.1023/A:1026236803798
  11. C.-W. Nahm, Mater. Lett., 57, 1317 (2003) https://doi.org/10.1016/S0167-577X(02)00979-5
  12. C.- W. Nahm, B.-C. Shin and B.-H. Min, Mater. Chem. Phys., 82, 157 (2003) https://doi.org/10.1016/S0254-0584(03)00213-X
  13. C.-W. Nahm, Mater. Lett., 58, 2252 (2004) https://doi.org/10.1016/S0167-577X(04)00104-1
  14. C.-W. Nahm, J.-A. Park, B.-C, Shin, and I.-S, Kim, Ceram. Internation., 30, 1009 (2005)
  15. H. H. Hng and K. M. Knowles, J. Mater. Sci., 37, 1143 (2002) https://doi.org/10.1023/A:1014359204034
  16. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc., 97, 109 (1972) https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  17. J. Fan and R. Freer, J. Am. Cearm. Soc., 77, 2663 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04659.x
  18. T. K. Gupta and W. G. Carlson, J. Mater, Sci., 20, 3487 (1985) https://doi.org/10.1007/BF01113755