DOI QR코드

DOI QR Code

An Apparatus for Containerless Melting and Solidification of Materials Via Electrostatic Levitation

정전기 부유 무용기 용해 및 응고 장비

  • Sung, Y.S. (Priority Research Institute, School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Kim, M.H. (Priority Research Institute, School of Nano & Advanced Materials Engineering, Changwon National University)
  • 성연수 (창원대학교 중점연구소 나노.신소재공학부) ;
  • 김명호 (창원대학교 중점연구소 나노.신소재공학부)
  • Published : 2006.07.27

Abstract

An apparatus capable of melting and solidifying various materials containerlessly in high vacuum via electrostatic levitation (ESL) has been developed for finding materials with new or improved properties and further building a database for processing materials in microgravity. Containerless solidification of semiconductors, metals, and alloys such as Si, Zr, Nb, Mo, $V_3Si$, and boron carbides has been carried out to test how various materials at how high temperatures can be processed by ESL. The materials in levitation became spherical at melting by their own surface tensions which were ideal for measuring intrinsic thermophysical properties of materials in the liquid state. Multiple cycles of melting and cooling were reproducibly repeated and radiative cooling curves were recorded.

Keywords

References

  1. F. Gillessen, D. M. Herlach and B. Feuerbacher, J. Less-Common Met., 145, 145 (1988) https://doi.org/10.1016/0022-5088(88)90271-8
  2. R. F. Cochrane, P. V. Evans and A. L. Greer, Mater. Sci. Eng., 98, 99 (1988) https://doi.org/10.1016/0025-5416(88)90135-8
  3. A. L. Greer, Mater. Sci. Eng., A 178, 113 (1994) https://doi.org/10.1016/0921-5093(94)90528-2
  4. Y. Tian, R. G. Holt and R. E. Apfel, Rev. Sci. Instrum., 66, 3349 (1995) https://doi.org/10.1063/1.1145506
  5. J. K. R. Weber, D. S. Hampton, D. R. Merkley, C. A. Rey, M. M. Zatarski and P. C. Nordine, Rev. Sci. Instrum., 65, 456 (1994) https://doi.org/10.1063/1.1145157
  6. E. C. Okress, D. M. Wroughton, G. Comentz, P. H. Brace and J. C. R. Kelly, J. Appl. Phys., 23, 545 (1952) https://doi.org/10.1063/1.1702249
  7. H. J. Fecht and W. L. Johnson, Rev. Sci. Instrum., 62, 1299 (1991) https://doi.org/10.1063/1.1142488
  8. G. A. Bertero, W. H. Hofmeister, M. B. Robinson and R. J. Bayuzick, Metall. Trans., A 22A, 2713 (1991)
  9. G. A. Bertero, W. H. Hofmeister, M. B. Robinson and R. J. Bayuzick, Metall. Trans., A 22A, 2723 (1991)
  10. K. Eckler, F. Gartner, H. Assadi, A. F. Norman, A. L. Greer and D. M. Herlach, Mater. Sci., Eng. A 226-228, 410 (1997)
  11. W. K. Rhim, S. K. Chung, D. Barber, K. F. Man, G. Gutt, A. Rulison and R. E. Spjut, Rev. Sci. Instrum., 64, 2961 (1993) https://doi.org/10.1063/1.1144475
  12. A. J. Rulison and W. K. Rhirn, Rev. Sci. Instrum., 65, 695 (1994) https://doi.org/10.1063/1.1145087
  13. A. J. Rulison and W. K. Rhim, Metall. Mater. Trans., B 26B, 503 (1995) https://doi.org/10.1007/BF02653866
  14. R. Busch, Y. J. Kim and W. L. Johnson, J. Appl. Phys., 77, 4039 (1995) https://doi.org/10.1063/1.359485
  15. R. Busch, Y. J. Kim, W. L. Johnson, A. J. Rulison, W. K. Rhim and D, Isheim, Appl. Phys. Lett., 66, 3111 (1995) https://doi.org/10.1063/1.113619
  16. Y. J. Kim, R. Busch and W. L. Johnson, Appl. Phye. Lett., 68, 1057 (1996) https://doi.org/10.1063/1.116247
  17. R. Busch, Y. J. Kim, W. L. Johnson, A. J. Rulison, W. K. Rhim and D. Isheim, Appl. Phys. Lett., 66, 3111 (1995) https://doi.org/10.1063/1.113619
  18. S. K. Chung, D. B. Thiessen and W. K. Rhim, Rev. Sci. Instrum., 67, 3175 (1996) https://doi.org/10.1063/1.1147584
  19. A. J. Rulison, J. L. Watkins and B. Zambrano, Rev. Sci. Instrum., 68, 2856 (1997) https://doi.org/10.1063/1.1148208
  20. W. K. Rhim, S. K. Chung, A. J. Rulison and R. E. Spjut, Int. J. Thermophys. 18, 459 (1997) https://doi.org/10.1007/BF02575175
  21. K. Ohsaka, S. K. Chung, W. K. Rhim and J. C. Holzer, Appl. Phys. Lett., 70, 423 (1997) https://doi.org/10.1063/1.118317
  22. K. Ohsaka, S. K. Chung, W. K. Rhim, A. Peker, D. ?Scruggs and W. L. Johnson, Appl. Phys, Lett., 70, 726 (1997) https://doi.org/10.1063/1.118250
  23. P. F. Paradis and W. K. Rhim, J. Mater. Res., 14, 3713 (1999) https://doi.org/10.1557/JMR.1999.0501
  24. W. K. Rhim and K. Ohsaka, J. Cryst. Growth, 208, 313 (2000) https://doi.org/10.1016/S0022-0248(99)00437-6
  25. Y. S. Sung, H. Takeya and K. Togano, Rev. Sci. Instrum., 72, 4419 (2001) https://doi.org/10.1063/1.1419226
  26. Y. S. Sung, H. Takeya and K. Togano, Jpn. J. Appl. Phys., Part 2 41, L895 (2002) https://doi.org/10.1143/JJAP.41.L895
  27. P. F. Paradis, T. Ishikawa and S, Yoda, Int. J. Thermophys., 24, 239 (2003) https://doi.org/10.1023/A:1022326618592
  28. Y. S. Sung, H. Takeya and K. Togano, J. Appl. Phys., 92, 6531 (2002) https://doi.org/10.1063/1.1518753
  29. H. Takeya, Y. S. Sung, E. H. Sadki, K. Hirata and K. Togano, Jpn. J. Appl. Phys. Part 1 42, 2675 (2003) https://doi.org/10.1143/JJAP.42.2675
  30. Y. S. Sung, H. Takeya, K. Hirata and K. Togano, Appl. Phys. Lett., 82, 3638 (2003) https://doi.org/10.1063/1.1578517
  31. Y. S. Sung, H. Takeya, K. Hirata and K. Togano, Appl. Phys. Lett., 83, 1122 (2003) https://doi.org/10.1063/1.1599623
  32. H. Takeya, Y. S. Sung, K. Hirata and K. Togano, Physica C, 392-396, 479 (2003) https://doi.org/10.1016/S0921-4534(03)01166-3
  33. Y. S. Sung, D. S. Bae, T. K. Song, M. H. Kim, H. Takeya, K. Hirata and K. Togano, Appl. Phys. Lett., 88, 121922 (2006) https://doi.org/10.1063/1.2189154
  34. D. R. Lide, CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, Boca Raton, FL, 2002)
  35. D. Turnbull and R. E. Cech, J. Appl. Phys., 21, 804 (1950) https://doi.org/10.1063/1.1699763
  36. D. Turnbull, J. Appl. Phys., 21, 1022 (1950) https://doi.org/10.1063/1.1699435
  37. D. Turnbull, J. Met., 188, 1144 (1950)
  38. D. H. Rasmussenn and C. R. Loper, Jr., Acta Metall., 23, 1215 (1975) https://doi.org/10.1016/0001-6160(75)90040-1
  39. H. W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett., 45, 615 (1984) https://doi.org/10.1063/1.95330
  40. G. Devaud and D. Turnbull, Acta Metall., 35, 765 (1987) https://doi.org/10.1016/0001-6160(87)90202-1
  41. Y. Shao and F. Spaepen, J. Appl. Phys., 79, 2981 (1996) https://doi.org/10.1063/1.361222
  42. T. Iida and R. I. L. Guthrie, The Physical Properties of Liquid Metals (Clarendon, Oxford, 1988)
  43. O. Kubaschewski , C. B. Alcock and P. J. Spencer, Materials Thermochemistry, 6th ed. (Pergamon, New York, 1993)
  44. D. R. Lide, Jr., JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data Vol. 14, Suppl. 1, 3rd ed. (American Chemical Society and American Institute of Physics, Washington D.C./Meiville, NY, 1985)
  45. Y. S, Touloukian, Thermal Radiative Properties-Metallic Elements and Alloys, Vol. 7 of Therrnophysical Properties of Matter (IFI/Plenum, New York, 1970)
  46. S. K. Chung, D. B. Thiessen and W. K. Rhim, Rev. Sci. Instrum., 68, 2597 (1997) https://doi.org/10.1063/1.1148454
  47. Y. S. Sung, H. Takeya and K. Togano, J. Appl. Phys., 93, 3681 (2003) https://doi.org/10.1063/1.1556973