DOI QR코드

DOI QR Code

PVP-기반 유기 절연막 형성과 OTFT 제작

Formation of PVP- Based Organic Insulating Layers and Fabrication of OTFTs

  • Jang, Ji-Geun (Department of Electronics Engineering, Dankook University) ;
  • Seo, Dong-Gyoon (Department of Electronics Engineering, Dankook University) ;
  • Lim, Yong-Gyu (Department of Electronics Engineering, Dankook University)
  • 발행 : 2006.05.27

초록

The formation and processing of organic insulators on the device performance have been studied in the fabrication of organic thin film transistors (OTFTs). The series of polyvinyls, poly-4-vinyl phenol(PVP) and polyvinyltoluene (PVT), were used as solutes and propylene glycol monomethyl ether acetate(PGMEA) as a solvent in the formation of organic insulators. The cross-linking of organic insulators was also attempted by adding the thermosetting material, poly (melamine-co-formaldehyde) as a hardener in the compound. The electrical characteristics measured in the metal-insulator-metal (MIM) structures showed that insulating properties of PVP layers were generally superior to those of PVT layers. Among the layers of PVP series: PVP(10 wt%) copolymer, 5 wt% cross-linked PVP(10 wt%), PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%), the 10 wt% cross-linked PVP(20 wt%) layer showed the lowest leakage current characteristics. Finally, inverted staggered OTFTs using the PVP(20 wt%) copolymer, 5 wt% cross-linked PVP(20 wt%) and 10 wt% cross-linked PVP(20 wt%) as gate insulators were fabricated on the polyether sulphone (PES) substrates. In our experiments, we could obtain the maximum field effect mobility of 0.31 $cm^2/Vs$ in the device from 5 wt% cross-linked PVP(20 wt%) and the highest on/off current ratio of $1.92{\times}10^5$ in the device from 10 wt% cross-linked PVP(20 wt%).

키워드

참고문헌

  1. F. Ebisawa, T. Kurokawa and S. Nara, J. Appl. Phys., 54, 3255 (1983) https://doi.org/10.1063/1.332488
  2. H. Koezuke, A. Tsumura and T. Ando, Synth. Met., 18, 699 (1987) https://doi.org/10.1016/0379-6779(87)90964-7
  3. G. Guillaud, M. AlSadoun, M. Maitrot, J. Simon and M. Bouvet, Chem. Phys. Lett., 167, 503 (1990) https://doi.org/10.1016/0009-2614(90)85459-P
  4. C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  5. F. Garnier, G. Horowitz, X. Z. Peng and D. Fichou, Adv. Mater., 2, 592 (1990) https://doi.org/10.1002/adma.19900021207
  6. J. G. Laquindanum, H. E. Katz and A. J. Lovinger, J. Am. Chem. Soc., 120, 664 (1998) https://doi.org/10.1021/ja9728381
  7. H. E. Katz, J. Johnson, A. J. Lovinger and W. Li, J. Am. Chem. Soc., 122, 7787 (2000) https://doi.org/10.1021/ja000870g
  8. P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni and W. Andreoni, Appl. Phys. Lett., 80, 2517 (2002) https://doi.org/10.1063/1.1467706
  9. H. Klauk, D. J. Gundlach, J. A. Nicoles, C. D. Sheraw, M. Bonse and T. N. Jackson, Solid State Technol., 43, 63 (2000)
  10. H. Klauk, D. J. Gundlach, J. A. Nicoles and T. N. Jackson, IEEE Transactions on Electron Devices, 46, 1258 (1999) https://doi.org/10.1109/16.766895
  11. H. S. Byun, G. G. G Kim, Y. K. Kim, H. K. Han and C. K. Song, Proceedings of KICS & IEEK Fall Conference, 44 (2004)
  12. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radik and W. Weber, J. Appl. Phys., 92, 5259 (2002) https://doi.org/10.1063/1.1511826
  13. J. W. Kang, Y. S. Kim, M. H. Oh, S. G. Lim, J. G. Jang, H. J. Chang and G. M. Heo, Information Display Engineering, Chungmoongak, 184 (2005)
  14. Y.X. Xu, H.S. Byun and C. K. Song, Asia Display/IMID '04 DIGEST, 1027 (2004)
  15. Ben G. Streetman and Sanjay Banerjee, Solid State Electronic Devices, 5th ed., Prentice Hall Int. Inc., 287 (2000)