DOI QR코드

DOI QR Code

Highly Conformal Deposition of Pure Co Films by MOCVD Using Co2(CO)8 as a Precursor

Co2(CO)8 (Dicobalt Octacarbonyl) 전구체를 이용한 MOCVD Co 박막의 균일한 증착 특성 및 높은 순도에 관한 연구

  • Lee, Jeong-Gil (School of Advanced Materials Engineering, Kookmin University) ;
  • Lee, Jae-Gab (School of Advanced Materials Engineering, Kookmin University)
  • 이정길 (국민대학교 신소재공학부) ;
  • 이재갑 (국민대학교 신소재공학부)
  • Published : 2006.02.27

Abstract

We have investigated the effect of the experimental variables such as temperature and pressure on conformality of Co films deposited over high aspect ratio trenches using $Co_2(CO)_8$ as a precursor. The results show that the conformality of Co films is a strong function of temperature and process pressure. Lowering the pressure and temperature significantly improves the conformality. As the pressure decreases from 0.6 Torr to 0.2 Torr at $50^{\circ}C$, the bottom coverage of Co films over $0.2{\mu}m$ width trenches with an aspect ratio of 13 to 1 significantly increases to 85%. However, further increasing the temperature from 50 to $60^{\circ}C$ at the pressure of 0.2 Torr degrades the bottom coverage to 14%. In contrast, the extremely low pressure of 0.03 Torr allows the excellent conformal deposition of Co films up to $70^{\circ}C$. This can be attributed to the suppression of homogeneous reaction in the gas phase, which can create the intermediate products with high sticking coefficient. In addition, the Co films deposited at $50^{\circ}C$ show the low resistivity with negligible contamination. As a result, the newly developed Co process using MOCVD can be implemented into the next generation devices with complex shapes.

Keywords

References

  1. S. Wolf, in Silicon Processing for the VLSI Era, 2, 127, Lattice Press, California (1986)
  2. S. B. Kang, H. S. Kim, K. J. Moon, W. H. Sohn, G. H. Choi, S. H. Kim and N. J. Bae, Tech. Dig. Int. Electron. Devices Meet., 20, 501 (2003)
  3. D. K. Sohn, J. S. Park, B. H. Lee, J. U. Bae, K. S. Oh, S. K. Lee, J. S. Byun and J. J. Kim, Tech. Dig. Int. Electron Devices Meet., 137, 1005 (1998)
  4. K. Ishida, Y. miura, K. Hirose, S. Harada and T. Narusawa, Appl. Phys. Lett., 82, 12 (2003)
  5. T. I. Selinder, D. J. Miller and K. E. Gray, Appl. Phys. Lett., 67, 11 (1995)
  6. M. E. Gross, K. S. Kranz, D. Brasen and H. Luftman, J. ?Vac. Sci, Technol., B, 6, 1548 (1988) https://doi.org/10.1116/1.584212
  7. B. Y. Lim, A. Rahtu and R. G. Gordon, Nature Materials, 2, 749 (2003) https://doi.org/10.1038/nmat1000
  8. G. J. M. Dormans, G. J. B. M. Meekes and E. G. J. Staring, J. Cryst. Growth, 114,364 (1991) https://doi.org/10.1016/0022-0248(91)90054-9
  9. H. S. Rhee and B. T. Ahn, J. Electrochem. Soc., 146,2720 (1999) https://doi.org/10.1149/1.1391999
  10. Y. K. Ko, D. S. Park, B. S. Seo, H. J. Yang, H. J. Shin, ?J. Y. Kim, J. H. Lee, W. H. Lee, P. J. Reucroft and J. G. Lee, Mater.Chem. Phys. 80, 560 (2003) https://doi.org/10.1016/S0254-0584(03)00085-3
  11. D. Miksa and T. B. Brill, Ind. Eng. Chem. Res., 41, 5151 (2002) https://doi.org/10.1021/ie020185d
  12. Synthesis, Functionalization and Surface Treatment of Nano-Particles, M. I. Baraton, Editor, p. 107, American Scientific Publishers, France (2003)