DOI QR코드

DOI QR Code

CaAl2Si2O8를 입계상으로 가지는 Al2O3 계면의 분자동력학 시뮬레이션

Molecular Dynamics Simulation of Al2O3 Grain Boundaries with CaAl2Si2O8 as Interface Phase

  • 신순기 (삼척대학교 신소재공학과)
  • Shin, Soon-Gi (Department of Advanced Materials Engineering, Samcheok National University)
  • 발행 : 2006.02.27

초록

Molecular dynamics simulations were performed to study interface structures between an $Al_2O_3$ crystalline phase and a interface phase of $CaAl_2Si_2O_8$. We calculated atomic structures and excess interface energies in systems with different thicknesses of the interface film. It was found that excess interface energies at first readily decreased with increasing film thickness, but increased for larger thicknesses of more than 2 nm. The excess energies of $Al_2O_3/CaAl_2Si_2O_8$ interfaces exhibit a minimum at a thickness around 1 nm. In this range of film thicknesses, the atoms in the interface film show a short-range ordered structure and slow diffusion rather than the random structure and rapid diffusion expected to an observation of an equilibrium thickness for interface films in ceramics.

키워드

참고문헌

  1. H. Grimmer, R. Bonnet, S. Lartigue and L. Priester, Philos. Mag., 61, 493 (1990) https://doi.org/10.1080/01418619008231929
  2. H. Matsubara, Ceramics Japan, 30, 385 (1995)
  3. P. R. Kenway, J. Am. Ceram. Soc., 77, 349 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07002.x
  4. S. D. Mo and W. Y. Ching, J. Am. Ceram. Soc., 79, 627 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07921.x
  5. D. R. Clarke, J. Am. Ceram. Soc., 70, 15 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb04846.x
  6. I. Tanake, H. J. Kleebe, M. K. Cinibulk, J. Bruley, D. R. Clarke and M. Ruhle, J. Am. Ceram. Soc., 77, 911 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb07246.x
  7. H. J. Kleebe, J. Ceram. Soc. Jpn, 105, 453 (1997) https://doi.org/10.2109/jcersj.105.453
  8. H. Suzuki, H. Matsubara, J. Kishino and T. Kondoh, J. Ceram. Soc. Jpn, 106, 1215 (1998) https://doi.org/10.2109/jcersj.106.1215
  9. H. Suzuki and H. Matsubara, J. Ceram. Soc. Jpn, 107, 727 (1999) https://doi.org/10.2109/jcersj.107.727
  10. S. Blonski and S. H. Garoofalini, J. Am. Ceram. Soc., 80, 1907 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03072.x
  11. P. L. Flaitz and J. A. Paek, J. Am.Ceram. Soc., 70, 449 (1987) https://doi.org/10.1111/j.1151-2916.1987.tb05674.x
  12. M. P. Mallamaci and C. Barry Carter, Acta Mater., 46, 2895 (1998) https://doi.org/10.1016/S1359-6454(97)00463-1
  13. M. Matsui, Phys. Chem. Minerals, 23, 345 (1996) https://doi.org/10.1007/BF00199500
  14. R. C. Weast, M. J. Astle and W. H. Beyer, CRC Handbook ?of chemistry and physics, 69th ed., CRC Press, Inc., Florida, (1998), B-79
  15. P. Nikolopoulos, J. Mater. Sci., 10,3993 (1985) https://doi.org/10.1007/BF00552390
  16. L. Q. Chen and G. Kalonji, Philos. Mag. A, 60, 525 (1989) https://doi.org/10.1080/01418618908212000