A Comparative Genome-Wide Analysis of GATA Transcription Factors in Fungi

  • 발행 : 2006.12.31

초록

GATA transcription factors are widespread eukaryotic regulators whose DNA-binding domain is a class IV zinc finger motif in the form $CX_{2}CX_{17-20}CX_{2}C$followed by a basic region. In fungi, they act as transcriptional activators or repressors in several different processes, ranging from nitrogen source utilization to mating-type switching. Using an in-house bioinformatics portal system, we surveyed 50 fungal and 9 out-group genomes and identified 396 putative fungal GATA transcription factors. The proportion of GATA transcription factors within a genome varied among taxonomic lineages. Subsequent analyses of phylogenetic relationships among the fungal GATA transcription factors, as well as a study of their domain architecture and gene structure, demonstrated high degrees of conservation in type IVa and type IVb zinc finger motifs and the existence of distinctive clusters at least at the level of subphylum. The SFH1 subgroup with a 20-residue loop was newly identified, in addition to six well-defined subgroups in the subphylum Pezizomycotina. Furthermore, a novel GATA motif with a 2f-residue loop ($CX_{2}CX_{21}CX_{2}C$, designated 'zinc finger type IVc') was discovered within the phylum Basidiomycota. Our results suggest that fungal GATA factors might have undergone multiple distinct modes of evolution resulting in diversified cellular modulation in fungi.

키워드

참고문헌

  1. Arabidopsis Genome Initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815 https://doi.org/10.1038/35048692
  2. Banerjee, N. and Zhang, M. Q. (2003). Identifying cooperativity among transcription factors controlling the cell cycle in yeast. Nucleic Acids Res. 31, 7024-7031 https://doi.org/10.1093/nar/gkg894
  3. Borkovich, K. A., Alex, L. A., Yarden, O., Freitag, M., Turner, G. E. et al. (2004). Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68, 1-108, table of contents https://doi.org/10.1128/MMBR.68.1.1-108.2004
  4. Caddick, M. X., Arst, H. N Jr. (1990). Nitrogen regulation in Aspergillus: are two fingers better than one? Gene 95, 123-127 https://doi.org/10.1016/0378-1119(90)90422-N
  5. Canizares, J. V., Pallotti, C., Sainz-Pardo, I., Iranzo, M., and Mormeneo, S. (2002). The SRD2 gene is involved in Saccharomyces cerevisiae morphogenesis. Arch. Microbiol. 177, 352-357 https://doi.org/10.1007/s00203-002-0400-z
  6. Cao, Y., Cairns, B. R., Kornberg, R. D., and Laurent, B. C. (1997). Sfh1p, a component of a novel chromatin-remodeling complex, is required for cell cycle progression. Mol. Cell Biol. 17, 3323-3334 https://doi.org/10.1128/MCB.17.6.3323
  7. Cavailer-Smith, T. (1987). The origin of fungi and pseudofungi. Cambridge Univ. Press
  8. Cheng, P., He, Q., Yang, Y., Wang, L., and Liu, Y. (2003). Functional conservation of light, oxygen, or voltage domains in light sensing. Proc. Natl. Acad. Sci. USA. 100, 5938-5943
  9. Cliften, P., Sudarsanam, P., Desikan, A., Fulton, L., Fulton, B. et al. (2003). Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71-76 https://doi.org/10.1126/science.1084337
  10. Conlon, H., Zadra, I., Haas, H., Arst, H. N., Jr., Jones, M. G. et al. (2001). The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol. Microbiol. 40, 361-375 https://doi.org/10.1046/j.1365-2958.2001.02399.x
  11. Cosma, M. P. (2004). Daughter-specific repression of Saccharomyces cerevisiae HO: Ash1 is the commander. EMBO Rep. 5, 953-957 https://doi.org/10.1038/sj.embor.7400251
  12. Crosson, S., Rajagopal, S. and Moffat, K. (2003). The LOV domain family: photoresponsive signaling modules coupled to diverse output domains. Biochemistry 42, 2-10 https://doi.org/10.1021/bi026978l
  13. C. elegans Sequencing Consortium (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012-2018 https://doi.org/10.1126/science.282.5396.2012
  14. Cunningham, T. S., Rai, R., and Cooper, T. G. (2000). The level of DAL80 expression down-regulates GATA factor-mediated transcription in Saccharomyces cerevisiae. J. Bacteriol. 182, 6584-6591 https://doi.org/10.1128/JB.182.23.6584-6591.2000
  15. Dean, R. A., Talbot, N. J., Ebbole, D. J., Farman, M. L., Mitchell, T. K. et al. (2005). The genome sequence of the rice blast fungus Magnaporlhe grisea. Nature 434, 980-986 https://doi.org/10.1038/nature03449
  16. Dietrich, F. S., Voegeli, S., Brachat, S., Lerch, A., Gates, K. et al. (2004). The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304, 304-307 https://doi.org/10.1126/science.1095781
  17. Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S. et al. (2004). Genome evolution in yeasts. Nature 430, 35-44 https://doi.org/10.1038/nature02579
  18. Eisendle, M., Oberegger, H., Zadra, I., and Haas, H. (2003). The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding I-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Mol. Microbiol. 49, 359-375 https://doi.org/10.1046/j.1365-2958.2003.03586.x
  19. Fabian, G. R., Hess, S. M., and Hopper, A. K. (1990). srd1, a Saccharomyces cerevisiae suppressor of the temperature-sensitive pre-rRNA processing defect of rrp1-1. Genetics 124, 497-504
  20. Feng, B., Haas, H., and Marzluf, G. A. (2000). ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development. Biochemistry 39, 11065-11073 https://doi.org/10.1021/bi000886j
  21. Feng, B. and Marzluf, G. A. (1998). Interaction between major nitrogen regulatory protein NIT2 and pathway-specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol. Cell Biol. 18, 3983-3990 https://doi.org/10.1128/MCB.18.7.3983
  22. Galagan, J. E., Calvo, S. E., Cuomo, C., Ma, L. J., Wortman, J. R. et al. (2005). Sequencing of Aspergillus nidulansand comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105-1115 https://doi.org/10.1038/nature04341
  23. Goffeau, A., Barrell, B. G., Bussey, H., Davis, R. W., Dujon, B. et al. (1996). Life with 6000 genes. Science 274, 546, 563-547 https://doi.org/10.1126/science.274.5287.546
  24. Greene, A. V., Keller, N., Haas, H., and Bell-Pedersen, D. (2003). A circadian oscillator in Aspergillus spp. regulates daily development and gene expression. Eukaryot. Cell 2, 231-237 https://doi.org/10.1128/EC.2.2.231-237.2003
  25. Haas, H. (2003). Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 62, 316-330 https://doi.org/10.1007/s00253-003-1335-2
  26. Haas, H., Angermayr, K., Zadra, I., and Stoffler, G. (1997). Overexpression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J. Biol. Chem. 272, 22576-22582 https://doi.org/10.1074/jbc.272.36.22576
  27. Haas, H., Zadra, I., Stoffler, G., and Angermayr, K. (1999). The Aspergillus nidulansGAT A factor SREA is involved in regulation of siderophore biosynthesis and control of iron uptake. J. Biol. Chem. 274, 4613-4619 https://doi.org/10.1074/jbc.274.8.4613
  28. Han, K. H., Han, K. Y., Yu, J. H., Chae, K. S., Jahng, K. Y. et al. (2001). The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol. Microbiol. 41, 299-309 https://doi.org/10.1046/j.1365-2958.2001.02472.x
  29. Hayama, R. and Coupland, G. (2003). Shedding light on the circadian clock and the photoperiodic control of flowering. Curr. Opin. Plant Biol. 6, 13-19 https://doi.org/10.1016/S1369-5266(02)00011-0
  30. Hefti, M. H., Francoijs, K. J., de Vries, S. C., Dixon, R, and Vervoort, J. (2004). The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur. J. Biochem. 271, 1198-1208 https://doi.org/10.1111/j.1432-1033.2004.04023.x
  31. Horowitz, N. H., Charlang, G., Horn, G., and Williams, N. P. (1976). Isolation and identification of the conidial germination factor of Neurospora crassa. J. Bacteriol. 127, 135-140
  32. Inglis, D. O. and Johnson, A. D. (2002). Ash1 protein, an asymmetrically localized transcriptional regulator, controls filamentous growth and virulence of Candida albicans. Mol. Cell Biol. 22, 8669-8680 https://doi.org/10.1128/MCB.22.24.8669-8680.2002
  33. International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature 436, 793-800 https://doi.org/10.1038/nature03895
  34. James, T. Y., Kauff, F., Schoch, C. L., Matheny, P. B., Hofstetter, V. et al. (2006). Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443, 818-822 https://doi.org/10.1038/nature05110
  35. Jones, T., Federspiel, N. A., Chibana, H., Dungan, J., Kalman, S. et al. (2004). The diploid genome sequence of Candida albicans. Proc. Natl. Acad. Sci. USA. 101, 7329-7334
  36. Kamper, J., Kahmann, R., Bolker, M., Ma, L. J., Brefort, T. et al. (2006). Insights from the genome of the biotrophic fungal plant pathogen Ustifago maydis. Nature 444, 97-101 https://doi.org/10.1038/nature05248
  37. Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. (2003). Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241-254 https://doi.org/10.1038/nature01644
  38. Klochendler-Yeivin, A. and Yaniv, M. (2001). Chromatin modifiers and tumor suppression. Biochim. Biophys. Acta. 1551, M1-10
  39. Kornberg, T. B. and Krasnow, M. A. (2000). The Drosophila genome sequence: implications for biology and medicine. Science 287, 2218-2220 https://doi.org/10.1126/science.287.5461.2218
  40. Kumar, S., Tamura, K., and Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform. 5, 150-163 https://doi.org/10.1093/bib/5.2.150
  41. Lan, C. Y., Rodarte, G., Murillo, L. A., Jones, T, Davis, R. W. et al. (2004). Regulatory networks affected by iron availability in Candida albicans. Mol. Microbiol. 53, 1451-1469 https://doi.org/10.1111/j.1365-2958.2004.04214.x
  42. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C. et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  43. Lee, K., Loros, J. J., and Dunlap, J. C. (2000). Interconnected feedback loops in the Neurospora circadian system. Science 289, 107-110 https://doi.org/10.1126/science.289.5476.107
  44. Lee, K., Singh, P., Chung, W. C., Ash, J., Kim, T. S. et al. (2006). Light regulation of asexual development in the rice blast fungus, Magnaporthe oryzae. Fungal Genet. Biol. 43, 694-706 https://doi.org/10.1016/j.fgb.2006.04.005
  45. Linden, H., Ballario, P., and Macino, G. (1997). Blue light regulation in Neurospora crassa. Fungal Genet. Biol. 22, 141-150 https://doi.org/10.1006/fgbi.1997.1013
  46. Loftus, B. J., Fung, E., Roncaglia, P., Rowley, D., Amedeo, P. et al. (2005). The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307, 1321-1324 https://doi.org/10.1126/science.1103773
  47. Loros, J. J., Richman, A., and Feldman, J. F. (1986). A recessive circadian clock mutation at the frq locus of Neurospora crassa. Genetics 114, 1095-1110
  48. Lowry, J. A. and Atchley, W. R. (2000). Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J. Mol. Evol. 50, 103-115 https://doi.org/10.1007/s002399910012
  49. Lu, Y. K., Sun, K. H., and Shen, W. C. (2005). Blue light negatively regulates the sexual filamentation via the Cwc1 and Cwc2 proteins in Cryptococcus neoformans. Mol. Microbiol. 56, 480-491 https://doi.org/10.1111/j.1365-2958.2005.04549.x
  50. Machida, M., Asai, K., Sano, M., Tanaka, T, Kumagai, T. et al. (2005). Genome sequencing and analysis of Aspergiffus oryzae. Nature 438, 1157-1161 https://doi.org/10.1038/nature04300
  51. Martinez, D., Larrondo, L. F., Putnam, N., Gelpke, M. D., Huang, K. et al.(2004). Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat. Biotechnol. 22, 695-700 https://doi.org/10.1038/nbt967
  52. Matzanke, B. F., Bill, E., Trautwein, A. X., and Winkelmann, G.(1987). Role of siderophores in iron storage in spores of Neurospora crassa and Aspergiffus ochraceus. J. Bacteriol. 169, 5873-5876 https://doi.org/10.1128/jb.169.12.5873-5876.1987
  53. Maxon, M. E. and Herskowitz, I. (2001). Ash1P is a site-specific DNA-binding protein that actively represses transcription. Proc. Natl. Acad. Sci. USA. 98, 1495-1500
  54. McGinnis, S. and Madden, T. L.(2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 32, W20-25 https://doi.org/10.1093/nar/gkh435
  55. Mo, X. and Marzluf, G. A.(2003). Cooperative action of the NIT2 and NIT4 transcription factors upon gene expression in Neurospora crassa. Curr. Genet. 42, 260-267
  56. Morozov, I. Y., Galbis-Martinez, M., Jones, M. G., and Caddick, M. X. (2001). Characterization of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA Mol. Microbiol. 42, 269-277 https://doi.org/10.1046/j.1365-2958.2001.02636.x
  57. Munchow, S., Ferring, D., Kahlina, K., and Jansen, R. P. (2002). Characterization of Candida albicans ASH1 in Saccharomyces cerevisiae. Curr. Genet. 41, 73-81 https://doi.org/10.1007/s00294-002-0286-y
  58. Nierman, W. C., Pain, A., Anderson, M. J., Wortman, J. R., Kim, H. S. et al. (2005). Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergiffus fumigatus. Nature 438, 1151-1156 https://doi.org/10.1038/nature04332
  59. Oliveira, E. M., Martins, A. S., Carvajal, E., and Bon, E. P. (2003). The role of the GATA factors Gln3p, Nil1p, Dal80p and the Ure2p on ASP3 regulation in Saccharomyces cerevisiae. Yeast 20, 31-37 https://doi.org/10.1002/yea.930
  60. Pelletier, B., Beaudoin, J., Philpott, C. C., and Labbe, S. (2003). Fep1 represses expression of the fission yeast Schizosaccharomyces pombe siderophore-iron transport system. Nucleic Acids Res. 31, 4332-4344 https://doi.org/10.1093/nar/gkg647
  61. Reyes, J. C., Muro-Pastor, M. I., and Florencio, F. J. (2004). The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol. 134, 1718-1732 https://doi.org/10.1104/pp.103.037788
  62. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C. et al.(2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110 https://doi.org/10.1126/science.290.5499.2105
  63. Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425
  64. Scazzocchio, C. (2000). The fungal GATA factors. Curr. Opin. Microbiol. 3, 126-131 https://doi.org/10.1016/S1369-5274(00)00063-1
  65. Schwede, T., Kopp, J., Guex, N., and Peitsch, M. C. (2003). SWISS-MODEL: M automated protein homology-modeling server. Nucleic Acids Res. 31, 3381-3385 https://doi.org/10.1093/nar/gkg520
  66. Sheppard, D. C., Doedt, T., Chiang, L. Y., Kim, H. S., Chen, D. et al. (2005). The Aspergillus fumigatusStuA protein governs the up-regulation of a discrete transcriptional program during the acquisition of developmental competence. Mol. Biol. Cell 16, 5866-5879 https://doi.org/10.1091/mbc.E05-07-0617
  67. Svetlov, V. V. and Cooper, T. G. (1998). The Saccharomyces cerevisiaeGATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. J. Bacteriol. 180, 5682-5688
  68. Tao, Y. and Marzluf, G. A. (1999). The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit-2 mRNA and protein. Curr. Genet. 36, 153-158 https://doi.org/10.1007/s002940050485
  69. Teakle, G. R. and Gilmartin, P. M. (1998). Two forms of type IV zinc-finger motif and their kingdom-specific distribution between the flora, fauna and fungi. Trends Biochem. Sci. 23, 100-102
  70. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL. W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  71. Tuskan, G. A., Difazio, S., Jansson, S., Bohlmann, J., Grigoriev, I. et al. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596-1604 https://doi.org/10.1126/science.1128691
  72. Tyler, B. M., Tripathy, S., Zhang, X., Dehal, P., Jiang, R. H. et al. (2006). Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313, 1261-1266 https://doi.org/10.1126/science.1128796
  73. Vitale, N., Moss, J., and Vaughan, M. (1998). Molecular characterization of the GTPase-activating domain of ADP-ribosylation factor domain protein 1 (ARD1). J. Biol. Chem. 273, 2553-2560 https://doi.org/10.1074/jbc.273.5.2553
  74. Voisard, C., Wang, J., McEvoy, J. L., Xu, P., and Leong, S. A.(1993). urbs1, a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid transcription factor GATA-1. Mol. Cell Biol. 13, 7091-7100 https://doi.org/10.1128/MCB.13.11.7091
  75. Waterston, R. H.Lindblad-Toh, K.Birney, E.Rogers, J.Abril, J. F. et al.(2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562 https://doi.org/10.1038/nature01262
  76. Wood, V.Gwiliiam, R.Rajandream, M. A.Lyne, M.Lyne, R. et al.(2002). The genome sequence of Schizosaccharomyces pombe. Nature 415, 871-880 https://doi.org/10.1038/nature724
  77. Zdobnov, E. M. and Apweiler, R. (2001). InterProScan-an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17, 847-848 https://doi.org/10.1093/bioinformatics/17.9.847