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{ Abstract _]|

The geometric configuration in the weight reduction designis very required to be started from the conceptual design
with low cost, high performance and quality. In this point, a structural-topological shape concerned with conceptual
design of structure is important. The method used in this paper combines three optimization techniques, where the
shape and physical dimensions of the structure and material distribution are hierachically optimized, with the maximum
rigidity of structure and lightweight. As the results, the technology of weight reduction design is considered in designs

of aluminum control arm and inner panel of door.

Key Words : Weight reduction design(5}5 Z+3F AdA), Size optimization(2]4> %|213}), Shape optimization(F 4 |23}, Topology
optimization( YA+ 2] Z|3}), Finite element analysis(5-3F 84 34)

Notation 1. Introduction

Y2 Element density Recently, developing a design configuration that fulfills
E Young’s modulus various performance requirements, such as strength,
[D( )] Elastic constant matrix stiffness and cost, must be necessary in an extensive
r Design space amount of structural designs. Thus, it become important
Q Design domain that the concept design takes into account a minimum
[K] Stiffness matrix weight structure with maximum or feasible performance
{F} Force vector based on the given constraints.

{x} Design variable vector Optimization techniques are useful design tools, in this
[M] Mass matrix point. , Structural optimization can be categorized into
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the following three classes. First is referred to as sizing
optimization, which chooses the sizes of structure as
design variables, such as cross sectional dimensions of
members(thickness, width, height, moment of inertia,
torsional constant) in the given domain. The next
important design is the shape optimization, in which the
geometry of structure is varied to obtain the optimal
structural shape. In shape optimization, the boundary of
structure is variable, so parametrization of geometry is
the most important aspect(l’z), In both sizing and shape
optimization, the topology(connectivity and hole of element
in a microstructure) is predefined. In other words, topology
optimization is to find a preliminary structural configuration
that meets a predefined criterion. Topology optimization
can be identified into two general approached. The first
approach(microstructure approach) is to find the micro-
structure parameters(size and orientation of hole) of each

1) The second

designed element in a finite element mode
approach is find the material properties of each discretized
part of design domain®?. Traditional shape optimization
is based on the assumption that the geometry of structure
is defined into the shape in its boundary and that an
optimal design can be found by varying the shape of an
existing initial design. Thus, this formulation cannot
remove existing boundaries or add new boundaries to the
design. The solutions obtained from the same topology
as the initial design are far from optimal because other
competing topologies cannot be explored. For these
reasons, in order to be able to come up with good initial
designs, topology optimization is becoming increasingly
important. The paper presents the integrated optimization
procedure to generate solutions to weight reduction
structure design and the effectiveness in the sizing, shape
and topology designs of continuum structures for least
weight and maximum stiffness. This design procedure
can efficiently be applied to the typical components in
cases where the appropriate treatment of structural details
arise in connection with inner panels or where the inner
and outer panels are adhesively bonded to form a weight

reduction structure.
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2. Basic theories of optimization

2.1 Sizing and shape optimization

These methods allow to determine the physical dimen-
sions such as thickness, height, width and the optimum
shape of variable contour edges which define the geo-
metry of the surface. The optimization algorithm belongs
to the family of methods generally referred to as “gradient-
based”, since, in addition to function values, they use
function gradients to assist in the numerical search for an
optimum. The first step in a numerical search procedure
is determining the direction to search. In general, we at
least need to know the gradient of our objective function
and perhaps some of the constraint functions as well. In
the sizing optimization, we are usually concerned with a
vector of design variables, Ax, which are thickness,
height, width. The gradient of the function can be written

as
OF F(x+Ax))—-F(x)
Ox, Ax,
VF(x)=< @ = :
OF F(x+Ax,)-F(x)
Ox Ax M

n n
where each partial derivative is a single correspondent of
the n dimensional vector.

Physically, in the direction of increasing objective
function, we will actually move in a direction opposite
to that of the gradient. The steepest descent algorithm
searches in the direction defined by the negative of the
objective function gradient, or

S=-VF )

For a search direction S and a vector of design
variables x, the new design at the conclusion of our
search in this direction can be written as

xi+] :xi +a*Si+] (3)
In the shape optimization, the design domain is

determined by movements of control points along the
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directions of the vectors required. Thus, shape design
variables represent translation of the so-called control
points along previously selected directions. These points
describe the geometry of the boundary curves, that is, the
shape of the overall model. However, because of the
hierarchical construction of points, curves and surfaces of
the model and the variations within an upper and lower
limit, it is difficulty in treating the overall domain of
structure. Thus, it is necessary that the designed domains
out of the overall structure have to be chosen.

2.2 Topology optimization

The fundamental theory of topology optimization is to
distribute the material property of element density for the
structural rigidity. In the given domain, each element can
be distributed with the following material property
relationship. Once the parameter is chosen, the Young’s
Modulus of cell can be directly represented by Eq. (5).
When n > 1, the ratio of relative density is forced to 0
or 1, as given by

Pi=K;i Po )

E; :(Ki)n E 5

i
where E; element elastic modulus, £, reference elastic
modulus, p; density of element i, p reference density of
element /, x; relative density ratio of element i, » density
index.

From the relationship of stress-strain ({o}=[D]{¢}), the
elastic constant, [D], can be given as the relative density
ratio. The elasticity constant of a plane stress problem for
isdtropic material is

£ r I v 0
O L
Vlo oo (1-v)2 (©)

Fig. 1 shows the microstructure of element cell. In
two-dimensional case, the microstructure is formed inside
an empty rectangle in a unit cell, where a, b and & are
regarded as the design variables. In order to develop a
complete void, both a and b must be 1, whereas for solid
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material a and b must be 0. In three-dimensional case,
the microstructure is formed inside an empty rectangle
box in a unit cell, where a, b, ¢, ¢, ¢ and & are regarded
as the design variables.

In order to develop a complete void, @, b and ¢ must
all be 1, whereas for a solid material a, b and ¢ must be
0. The variables ¢, @ and & represent the three-dimensional
rotations of unit cell.

For example, to make analogy to the idea of a cellular
body consisting of unit cells with rectangular holes, «;
may be written as,

K =1-a; b, @)
where @; and b; are the void dimensions of element i as
shown in the left of Fig. I

The matrix of elasticity constant of a plane stress

problem for isotropic material can be written as,

D(p_)_EO(l—a,-bi)" ‘l/ ‘1/ g
= o 0 (-2 ®)

For the solid element, the elasticity constant can be

given by,
ISR S| 0 0
I-v 1-v
LA LR 0 0
I-v 1-v
v v
_— 1 0 0 0
E1l-v)(1-abe) [1-v 1-v
Dp; )= = 1-2v
1+v)i-2 1=
(t+v)i-2v) 0 ) 0
0o 0 0 0 2’("—2") 0
-V
_ 9
0 0 0 0 0 1-2v ( )
2-v)

where a;, b; and ¢; are the void dimensions of element
i as shown in the right of Fig. 1.

In order to design the lightweight structure with high
structural rigidity, the objective must be defined as mean

compliance and the constraint as mass.

Iﬂxidf

Minimize ¢
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2 D design domain

3 D design domain

Fig. 1 Design domain of microstructure

pi(K)dQA<V,
Subject to ¢ ,at 0sK; <1

(10)
where F; Force vector on element i, x; Displacement
vector of element /, I' Design space, (O Design domain,
Vo Given volume

The variation of structural rigidity with respect to
material element density can be calculated using the
following relationships,

For the static problem,

[K]{e}= (5}
2= Ay )

ox ox (1n
where {/7} is the pseudo-load.
for the eigenvalue problem,
[&]{p}-2[m]{g}=0
R
& ) M)
~y A8 g Al
B K- LAl D),

where {¢i }T [M ]{¢1} =1
The entries of stiffness matrix [K] can be written by
Eq. (7).
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[x]= § (8] [D( )][B]av (13)
where [B] spatial derivative matrix of displacement

variables

2.3 integrated optimization procedure

The integrated optimization approach combines the
optimum design techniques for maximum stiffness design
of structures. In the optimization procedure, the objective
function to minimize is the total elastic strain energy with

a constraint on the total available volume,

Minimize U(x17x2, 44444 x,,)

Subject to V( Xy, X3k )S Vs

min max . _
x; o Sx;Sx; i=l,un 14)

In the loop of topology optimization, material densities
and orientations are solved in two separate steps for
reaching the optimum. First is to define the material
layout in the design domain. Second is to define the local
layout in the global topological layout, which is the main
topology maintaining the structural rigidity. Since the
stiffness may change dramatically when local curvature
is modified, if this separate approach is used, the shape
and material distribution can be geometrically optimized.
And then, the sizing and shape optimization are used as
the detailed optimization design. The sizing optimization
is concerned with the physical dimensions and the shape

optimization is concerned with the robust local profile on

opology optimization
{Layout of structure &
material property)

Combined
optimization

Shape optimization
Sizing optimization (Geometry)
(Physical dimensions)

Fig. 2 Combined sizing, shape and topology optimization
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the design domain. Both the detailed optimizations are
inter-complemented, since the changes of focal geometry
on the domain can improve the stiffiness relative to the
increase of physical dimensions.

Through this method, the subsequent changes of
geometry and material distribution in the sublevel can
help to find the optimum convergence, without the
influence on each other and the change of global

stiffness.

3. Example

Based on the proposed approach, an example is pre-
sented to demonstrate the capability and effectiveness of
this implemented combined optimization method. This
integrated procedure can be applied to the weight-reduced
structure such as control arm, hood, door, tailgate and
roof.

For topology, sizing and shape optimizations, the
commercial finite element code are used. The weight-
reduced structure(control arm, hood, door, tailgate and
roof) decreased about 20% in weight reduction ratio and
increased 30% in stiffness by using topology pattern of

reinforcement materials.

3.1 Aluminum control arm

Definition of optimization
(object function, constraints,
design variables)

Redesigned model

/o

Contept model
Tritial design model
{configuration, matenial)
S CRRIRSRMI S
« Result of pt madel

Iy
Redesign | FEA & Topology Optimization ﬁ

Result of redesigned model
Final design model

Fig. 3 Design flow of aluminum control arm
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A-A" Secuon
(b) Shape profile for aluminum control amm

Fig. 4 Design model descriptions

Fig. 5 Stress contour of steel control arm(Pothole
brake)
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Table 2 Result of topology pattem of reinforcement

inner door
Density | Design iteration=10 | Design iteration=22
Maximum 4.80e-01 7.25¢-01
Minimum 9.34e-02 2.78e-02

Fig. 6 Stress contour of aluminum control arm(Pothole
brake)

Fig. 7 Manufactured aluminum control arm

Table 1 Comparison of max. stress (unit MPa)
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Fig. 8 Isotropic structure with reinforcement inner door

tendency of the stiffest structure. In the detailed design,
sizing and shape optimization are simultaneously performed
from the part selection process. The sizing optimization
is concerned to the thickness of panel and the shape
optimization to the configuration dimensions of reinforcement
parts. The configuration optimization problem is to find
the width and height of the channel of each inner panel.
The assembly model of door is used for the topology,
sizing, and shape optimization. The load conditions are

the sagging, torsion, the side intrusion and the longi-

Load cases Steel Aluminum
Pothole brake 745 182
Pothole corner 640 104
Ultimate vertical 386 62.5
Reverse brake 103 68.5 tudinal crush.
Lateral kerb strike 336 185
Oblique kerb strike 476 260

3.2 Inner panel of door

The door typically consists of the outer panel and the
inner panel. The inner panel divides pieces of parts,
which are the blank parts, reinforcement parts and
connection parts. The blank parts and connection parts to
body does not change. Therefore, the reinforcement parts
are the design domain for the structural rigidities.

In the conceptual design, topology optimization is

performed for several constraints to figure out the

Minimize the max imum deflections

subject to weight < original weight
for sizing optimization

thickness
for shape optimization

h* < change of height (h) < h*

wt < change of width (w) <w"

a® ; < configuration vector(a ) <a's,j=l.n

where /# and w are the  dimensions of reinforced rib in
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Fig. 9 Topology pattern of reinforcement inner door
(Design iteration=10)
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Fig. 10 Topology pattem of reinforcement inner door
(Design iteration=22)

the inner panel. g; is the move vector of reinforced bead.

4. Conclusion

This paper presents the optimization design methodology
in order to secure the structural rigidities and lightweight
of weight-reduced structure. The optimum design of
these kinds of structures is very difficult to predict since
stiffness changes dramatically with the curvature and
profile of reinforcement. The initially structural topology
is determined by topology optimization, the detailed
profiles are designed by the shape optimization, and the
detailed dimensions such as panel’s thickness and

mounting location are studied by sizing optimization.
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This method seems to provide an efficient tool to predict
the maximum stiffness design of weight-reduced structures
and serves as an excellent alternative to simultaneously
optimize not only the geometry but also the material
distribution, in the early stage of development.

And as the result, by applying topological optimization
method, the ratio of weight-reduced decreased 20% and
the stiffness of structure increased 30%. These ratios can

be differed by the choice of sensitivity of design variables.
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