DOI QR코드

DOI QR Code

HepG2 인체간암세포의 세포주기조절인자 발현에 미치는 sulforaphane의 영향

Modulation of Cell Cycle Regulators by Sulforaphane in Human Mepatocarcinoma HepG2 Cells

  • 배송자 (신라대학교 자연과학대학 식품영양학과 및 마린바이오산업화지원센터) ;
  • 김기영 (제주대학교 해양과학대학 해양과학부) ;
  • 유영현 (동아대학교 의과대학 해부학교실) ;
  • 최병태 (동의대학교 한의과대학 해부학교실) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 대학원 바이오물질제어학과)
  • Bae, Song-Ja (Department of Food and Nutrition, Silla University and Marine Biotechnology Center for Bio-Functional Material Industries) ;
  • Kim, Gi-Young (Faculty of Applied Marine Science, Cheju National University) ;
  • Yoo, Young-Hyun (Department of Anatomy and Cell Biology, Dong-A University College of Medicine) ;
  • Choi, Byung-Tae (Anatomy and Dongeui University Oriental Medicine and Department of Biomaterial Control(BK21 program), Dongeui University Graduate School) ;
  • Choi, Yung-Hyun (Biochemistry, Dongeui University Oriental Medicine and Department of Biomateriqal Control(BK21 program), Dongeui University Graduate School)
  • 발행 : 2006.12.01

초록

브로콜리를 포함한 십자화과 식물에서 glucoraphanin의 가수분해를 통해 생성되는 isothiocyanate의 일종인 sulforaphane은 역학적 조사를 포함한 다양한 선행 연구에서 강력한 암예방 효과를 가지는 것으로 알려져 있다. 항암효과에 관한 최근 연구 결과에 따르면 sulforaphane은 다양한 인체암세포의 증식을 억제하고 apoptosis를 유발할 수 있는 것으로 알려지고 있으나, 정확한 분자생물학적 기전은 밝혀져 있지 않은 상태이다. 본 연구에서는 sulforaphane의 항암작용 기전을 조사하기 위하여 HepG2 인체간암세포의 증식에 미치는 sulforaphane의 영 향을 조사하였다. Sulforaphane의 처리에 의한 HepG2 세포의 증식억제 및 형태적 변형은 세포주기 G2/M arrest 및 apoptosis 유발과 밀접한 관련이 있음을 알 수 있었다. RT-PCR 및 Western blot 분석 결과, sulforaphane 처리에 의하여 cyclin A 및 cyclin B1, Cdc2의 발현이 단백질 수준에서 선택적으로 저하되었으며, 종양억제 유전자 p53 및 Cdk inhibitor p21의 발현은 전사 및 번역 수준에서 sulforaphane 처리 농도 의존적으로 증가되었다. Sulforaphane의 항암 기전을 규명하기 위해서는 더 많은 연구가 부가적으로 필요하겠지만, 본 연구의 결과들에 의하면 sulforaphane은 강력한 인체암세포의 증식 억제 및 항암작용이 있을 것을 시사하여 준다고 할 수 있다.

Sulforaphane, an isothiocyanate derived from hydrolysis of glucoraphanin in broccoli and other cruciferous vegetables, was shown to induce phase II detoxification enzymes and inhibit chemically induced mammary tumors in rodents. Recently, sulforaphane is known to induce cell cycle arrest and apoptosis in human canter cells, however its molecular mechanisms are poorly understood. In tile present study, we demonstrated that sulforaphane acted to inhibit proliferation and induce morphological changes of human hepatocarcinoma HepG2 cells. Treatment of HepG2 cells with $10{\mu}M\;or\;15{\mu}M$ sulforaphane resulted in significant G2/M cell cycle arrest as determined by DNA flow cytometry. Moreover, $20{\mu}M$ sulforaphane significantly induced the population of sub-G1 cells suggesting that sulforaphane induced apoptosis. This anti-proliferative effect of sulforaphane was accompanied by a marked inhibition of ryclin A, cyclin 31 and Cdc2 protein. However, the levels of tumor suppressor p53 and Cdk inhibitor p21 mRNA and protein expression were significantly increased by sulforaphane treatment in a concentration-dependent manner. Although further studies are needed, the present work suggests that sulforaphane may be a potential rhemoprevetiveichemotherapeucc agent for the treatment of human cancer cells.

키워드

참고문헌

  1. Ajita, V.S., X. Dong, L.L. Karen, D. Rajiv and V.S. Shivendra. 2004. Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth PC-3 xenografts in vivo. Carcinogenesis 25, 83-90 https://doi.org/10.1093/carcin/bgg178
  2. Chiao, J.W., F.L. Chung, R. Kancherla, T. Ahmed, A. Mittelman and C.C. Conaway. 2002. Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int. J. Oncol. 20, 631-636
  3. Choi, Y.H., W.H. Lee, K.Y. Park and L. Zhang. 2000. p53-independent induction of p21(WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn. J. Cancer Res. 91, 164-173 https://doi.org/10.1111/j.1349-7006.2000.tb00928.x
  4. Datto, M.B., Y. Yu and X.F. Wang. 1995. Functional analysis of the transforming growth factor ${\beta}$ responsive elements in the WAF1/Cip1/p21 promoter. J. Biol. Chem. 270, 28623-28628 https://doi.org/10.1074/jbc.270.48.28623
  5. Denis, G., G. Martin, B. Dominique, M. Albert, T. Yves and B. Richard. 2004. Induction of medulloblastoma cell apoptosis by sulforaphane, a dietary anticarcinogen from Brassica vegetable. Cancer Lett. 203, 35-43 https://doi.org/10.1016/j.canlet.2003.08.025
  6. Elledge, S.J and J.W. Harper. 1994. Cdk inhibitors: on the threshold of checkpoints and development. Curr. Opin. Cell Biol. 6, 847-852 https://doi.org/10.1016/0955-0674(94)90055-8
  7. Girard, F., U. Strausfeld, A. Fernandez and N.J. Lamb. 1991. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67, 1169-1179 https://doi.org/10.1016/0092-8674(91)90293-8
  8. Greenwood, M.J and P.M. Landsdorp. 2003. Telomeres, telomerase, and hematopoietic stem cell biology. Arch. Med. Res. 34, 489-495 https://doi.org/10.1016/j.arcmed.2003.07.003
  9. Guadagno, T.M., M. Ohtsubo, J.M. Roberts and R.K. Assoian. 1993. A link between cyclin A expression and adhesion-dependent cell cycle progression. Science 262, 1572-1575 https://doi.org/10.1126/science.8248807
  10. Harper, J.W. 1997. Cyclin dependent kinase inhibitors. Cancer Surv. 29, 91-107
  11. Heiss, E., C. Herhaus, K. Klimo, H. Bartsch and C. Gerhauser. 2001. Nuclear factor ${kappa}B$ is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. J. Biol. Chem. 276, 32008-32015 https://doi.org/10.1074/jbc.M104794200
  12. Homayoun, V and B. Sam. 1996. From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: The telomere loss/DNA damage model of cell aging. Exp. Gerontol. 31, 295-301 https://doi.org/10.1016/0531-5565(95)02025-X
  13. Jackson, S.J and K.W. Singletary. 2004. Sulforaphane: a naturally occurring mammary carcinoma mitotic inhibitor, which disrupts tubulin polymerization. Carcinogenesis 25, 219-227
  14. Jackson, S.J and K.W. Singletary. 2004. Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J. Nutr. 134, 2229-2236 https://doi.org/10.1093/jn/134.9.2229
  15. Krek, W and E.A. Nigg. 1991. Differential phosphorylation of vertebrate p34cdc2 kinase at the G1/S and G2/M transitions of the cell cycle: identification of major phosphorylation sites. EMBO J. 10, 305-316
  16. Li, Y, C.S. Jenkins, M.A. Nichols and Y. Xiong. 1994. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21. Oncogene 9, 2261-2268
  17. Mathieu, N., L. Pirzio, M.A. Freulet-Marriere, C. Desmaze and L. Sabatier. 2004. Telomeres and chromosomal instability. Cell. Mol. Life Sci. 61, 641-656 https://doi.org/10.1007/s00018-003-3296-0
  18. Misiewicz, I., K. Skupinska and T. Kasprzycka-Guttman. 2003. Sulforaphane and 2-oxohexyl isothiocyanate induce cell growth arrest and apoptosis in L-1210 leukemia and ME-18 melanoma cells. Oncol. Rep. 10, 2045-2050
  19. Ohsumi, K., C. Katagiri and T. Kishimoto. 1993. Chromosome condensation in Xenopus mitotic extracts without histone H1. Science 262, 2033-2035 https://doi.org/10.1126/science.8266099
  20. Parnaud, G., P. Li, G. Cassar, P. Rouimi, J. Tulliez, L. Combaret and L. Gamet-Payrastre. 2004. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 48, 198-206 https://doi.org/10.1207/s15327914nc4802_10
  21. Petri, N., C. Tannergren, B. Holst, F.A. Mellon, Y. Bao, G.W. Plumb, J. Bacon, K.A. O'leary, P.A. Kroon, L. Knutson, P. Forsell, T. Eriksson, H. Lennernas and G. Williamson. 2003. Absorption/Metabolism of Sulforaphane and Quercetin and regulation of phase 2 enzymes, in human jejunum in vivo. Drug Metab. Dispos. 31, 805-813 https://doi.org/10.1124/dmd.31.6.805
  22. Pham, N.A., J.W. Jacobberger, A.D. Schimmer, P. Cao, M. Gronda and D.W. Hedley. 2004. The dietary isothiocyanate sulforaphane targets pathways of apoptosis, cell cycle arrest, and oxidative stress in human pancreatic cancer cells and inhibits tumor growth in severe combined immunodeficient mice. Mol. Cancer Ther. 3, 1239-1248
  23. Shang, J., S. Vanda, Y. Bao, A.F. Howie, G.J. Beckett and W. Gary. 2003. Synergy between sulforaphane and selenium in the induction of thioredoxin reductase 1 requires both transcriptional and translational modulation. Carcinogenesis 24, 497-503 https://doi.org/10.1093/carcin/24.3.497
  24. Sherr, C.J. 2000. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 60, 3689-3695
  25. Singh, S.V., A. Herman-Antosiewicz, A.V. Singh, K.L. Lew, S.K. Srivastava, R. Kamath, K.D. Brown, L. Zhang and R. Baskaran. 2004. Sulforaphane-induced G2/M phase cell cycle arrest involves checkpoint kinase 2-mediated phosphorylation of cell division cycle 25C. J. Biol. Chem. 279, 25813-25822 https://doi.org/10.1074/jbc.M313538200
  26. Surh, Y.J., K.S. Chun, H.H. Cha, S.S. Han, Y.S. Keum, K.K. Park and S.S. Lee. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-${\kappa}B$ activation. Mutat. Res. 480-481, 243-268 https://doi.org/10.1016/S0027-5107(01)00183-X
  27. Wang, L., D. Liu, T. Ahmed, F.L. Chung, H. Conaway and J,W. Chiao. 2004. Targenting cell cycle machinery as a molecular mechanism of sulforaphane in prostate cancer prevention. Int. J. Oncol. 24, 187-192
  28. Weinberg, R.A. 1995. The retinoblastoma protein and cell cycle control. Cell 81, 323-330 https://doi.org/10.1016/0092-8674(95)90385-2
  29. Xiong, Y., G.J. Hannon, H. Zhang, D. Casso, R. Kobayashi and D. Beach. 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704 https://doi.org/10.1038/366701a0
  30. Zeng, Y.X and W.S. EI-Deiry. 1996. Regulation of p21WAF1/CIP1 expression by p53-independent pathways. Oncogene 12, 1557-1564
  31. Zhang, Y., J. Li and L. Tang. 2005. Cancer-preventive iso-thiocyanates: dichotomous modulators of oxidative stress. Free Radic. Biol. Med. 38, 70-77 https://doi.org/10.1016/j.freeradbiomed.2004.09.033