References
- Cao, Y., A. Chen, S. S. An, R. W. Ji, D. Davidson and M. Llinas. 1997. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272, 22924-22928 https://doi.org/10.1074/jbc.272.36.22924
- Cao, Y., R. W. Ji, D. Davidson, J. Schaller, D. Marti, S. Sohndel, S. G. McCance, M. S. O'Reilliy, M. Llinas, J. Folkman. 1996. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. BioI. Chem. 271, 29461-29467 https://doi.org/10.1074/jbc.271.46.29461
- Davidson, D. J., C. Haskell, S. Majest, A. Kherzai, D. A. Egan, K. A. Walter, A. Schneider, E. F. Gubbins, L. Solomon, Z. Chen, R. Lesniewski, J. Henkin. 2005. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 65, 4663-4672 https://doi.org/10.1158/0008-5472.CAN-04-3426
- Gimbrone, M. A., R. S. Jr. Cotran, S. B. Leapman and J. Folkman. 1974. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413-427 https://doi.org/10.1093/jnci/52.2.413
- Gonzalez-Gronow, M., T. Kalfa, C. E. Johnson, G. Gawdi and S. V. Pizzo. 2003. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J. Biol. Chem. 278, 27312-27318 https://doi.org/10.1074/jbc.M303172200
- Huang, C., K. Jacobson and M. D. Schaller. MAP kinases and cell migration. 2004. J. Cell. Sci. 117, 4619-4628 https://doi.org/10.1242/jcs.01481
- Jaffe, E. A., R. L. Nachman, C. G. Becker and C. K. Minick. 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic clitelia. J. Clin. Invest. 52, 2745-2756 https://doi.org/10.1172/JCI107470
- Ji, W. R., F. J. Castellino, Y. Chang, M. E. Deford, H. Gray, X. Villarreal, M. E Kondli, D. N. Marti, M. Llinas, J. Schaller, R. A. Kramer, and P. A. Trail. 1998. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J. 12, 1731-1738 https://doi.org/10.1096/fasebj.12.15.1731
- Ji, W. R., L. G. Barrientos, M. LIinas, H Gray, X. Villarreal, M. E. DeFord, F. J. Castellino, R. A. Kramer, and P. A. Trail. 1998. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem. Biophys. Res. Commun. 247, 414-419 https://doi.org/10.1006/bbrc.1998.8825
- Joe, Y. A., Y. K. Hong, D. S. Chung, Y. J. Yang, J. K. Kang, Y. S. Lee, S. I. Chang, W. K. You, H. Lee, and S. I. Chung. 1999. Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int. J. Cancer 82, 694-699 https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<694::AID-IJC12>3.0.CO;2-C
- Kim, K. J., B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips and N. Ferrara. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844 https://doi.org/10.1038/362841a0
- Kim, H. K., Hong, Y. K., Park, H. E., Hong, S. H. and Joe, Y. A.. 2003. Secretory production of recombinant urokinase kringle domain in Pichia pastoris. J. Microbiol. Biotechnol. 13, 591-597
- Kim, K. S., Hong, Y. K., Joe, Y. A, Lee, Y., Shin, J. Y., Park, H. E., Lee, I. H., Lee, S. Y., Kang, D. K., Chang, S. I., Chung, S. I.. Anti-angiogenic activity of the recombenant kringle domain of urokinase and its specific entry into endothelial cells. 2003. J. Biol. Chem. 278, 11449-11456 https://doi.org/10.1074/jbc.M212358200
- Kim, J. S., Yu, H. K, Ahn, J. H., Lee, H. J., Hong, S. W., Jung, K. H., Chang, S. I., Hong, Y. K., Joe, Y. A, Byun, S. M., Lee, S. K., Chung, S. I. and Yoon, Y.. 2004. Human apolopoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313, 534-540 https://doi.org/10.1016/j.bbrc.2003.11.148
- Lee, T. H., Rhim, T. and Kim, S. S.. 1998. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J. Biol. Chem. 273, 28805-28812 https://doi.org/10.1074/jbc.273.44.28805
- Magnusson, S., L. Sottrup-Jensen, H. Claeys, M. Zajdel and T. E. Petersen. 1975. Proceedings: Complete primary structure of prothrombin. Partial primary structures of plasminogen and hirudin. Thromb. Diath. Haemorrh. 34, 562-563
- McLean, J. W., J. E. Tomlinson, W. J. Kuang, D. L. Eaton, E. Y. Chen, G. M. Fless, A. M. Scanu and R. M. Lawn. 1987. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132-137 https://doi.org/10.1038/330132a0
- Morales-Ruiz, M., D. Fulton, G. Sowa, L. R. Languino, Y. Fujio, K. Walsh, W. C. Sessa. 2000. Circ. Res. 86, 892-896 https://doi.org/10.1161/01.RES.86.8.892
- Moser, T. L., D. J. Kenan, T. A. Ashley, J. A. Roy, M. D. Goodman, U. K. Misra, D. J. Cheek and S. V. Pizzo. 2001. Endothelial cell surface F1-F10 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. U. S. A. 98, 6656-6661 https://doi.org/10.1073/pnas.131067798
- Moser, T. L., M. S. Stack, I. Asplin, J. J. Enghild, P. Hojrup, L. Everitt, S. Hubchak, H. W. Schnaper, S. V. Pizzo. 1999. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 96, 2811-2816 https://doi.org/10.1073/pnas.96.6.2811
- O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, J. Folkman. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328 https://doi.org/10.1016/0092-8674(94)90200-3
- O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, J. Folkman. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285 https://doi.org/10.1016/S0092-8674(00)81848-6
- Parangi, S., M. S. O'Reilly, G. Christofori, L. Holmgren, J. Grosfeld, J. Folkman and D. Hanahan. 1996. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. U. S. A. 93, 2002-2007 https://doi.org/10.1073/pnas.93.5.2002
- Pennica, D., W. E. Holmes, W. J. Kohr, R. N. Harkins, G. A. Vehar, C. A. Ward, W. F. Bennett, E. Yelverton, P. H. Seeburg, H. L. Heyneker, D. A. Goeddel, D. Collen. 1983. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301, 214-221 https://doi.org/10.1038/301214a0
- Redlitz, A., G. Daum, E. H. Sage. 1998. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J. Vase. Res. 36, 28-34 https://doi.org/10.1159/000025623
- Rousseau, S., F. Houle and J. Hout. Integrating the VEGF signals leading to antin-based motility in vascular endothelial cells. 2000. Trends Cardiovasc Med. 10, 321-327 https://doi.org/10.1016/S1050-1738(01)00072-X
- Steffens, G. J., W.A. Gunzler, F. Otting, E. Frankus and L. Flohe. 1982. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z. Physiol. Chem. 363, 1043-1058 https://doi.org/10.1515/bchm2.1982.363.2.1043
- Tarui, T., M. Majumdar, L. A. Miles, W. Ruf and Y. Takada. 2002. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J. Biol. Chem. 277, 33564-33570 https://doi.org/10.1074/jbc.M205514200
- Tournaire, R., M. R Simon, F. I. noble, A. Eichmann, P. England and J. Pouyssegur. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. 2004. EMBO Reports 5, 262-267 https://doi.org/10.1038/sj.embor.7400100
- Troyanovsky, B., T. Levchenko, G. Mansson, O. Matvijenko and L. Holmgren. 2001. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell. Biol. 152, 1247-1254 https://doi.org/10.1083/jcb.152.6.1247