DOI QR코드

DOI QR Code

Inhibition of ERK1/2 Activation and Cytoskeleton Rearrangement by the Recombinant Protein of Plasminogen Kringle 5

Plasminogen kringle 5 재조합 단백질에 의한 ERK1/2 활성화 및 세포골격 재배열 억제

  • Ha, Jung-Min (Cancer Research Institute and Department of Biomedical Sciences College of Medicine, The Catholic University of Korea) ;
  • Kim, Hyun-Kyung (Cancer Research Institute and Department of Biomedical Sciences College of Medicine, The Catholic University of Korea) ;
  • Kim, Myoung-Rae (Cancer Research Institute and Department of Biomedical Sciences College of Medicine, The Catholic University of Korea) ;
  • Joe, Young-Ae (Cancer Research Institute and Department of Biomedical Sciences College of Medicine, The Catholic University of Korea)
  • 하정민 (가톨릭대학교 의과대학 생명의과학과, 암연구소) ;
  • 김현경 (가톨릭대학교 의과대학 생명의과학과, 암연구소) ;
  • 김명래 (가톨릭대학교 의과대학 생명의과학과, 암연구소) ;
  • 조영애 (가톨릭대학교 의과대학 생명의과학과, 암연구소)
  • Published : 2006.12.01

Abstract

Plasminogen kringle 5 is a potent inhibitor of endothelial tell proliferation like an endogenous angiogenesis inhibitor, angiostatin consisting of plasminogen kringles 1-4. In this study, we produced the recombinant protein of plasminogen kringle 5 (PK5) employing an Pichia expression system and examined its. effect on~endothelial cell migration and its possible inhibitory mechanism. PK5 was expressed in Pichia pastoris GS115 by fusion of the cDNA spanning from Thr456 to Phe546 to the secretion signal sequence of a-factor prepro-peptide. After methanol induction, the secreted PK5 was purified by using S-spin column. SDS-PACE analysis of the purified protein showed one major band of approximately 10kDa. In in vitro migration assays, the purified protein inhibited dose-dependently the migration of human umbilical endothelial cells (HUVECs) induced by basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) with an $IC_{50}$ of approximately 500nM. Accordingly, it inhibited bfGF-stimulated extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in HUVECs at 500nM. In addition, it also potently inhibited bFGF-induced cytoskeletal rearrangement of HUVECs. Thus, these results suggest that Pichia-produced PK5 effectively inhibits endothelial cell migration, in part by suppression of ERK1/2 activation and blocking cytoskeleton rearrangement.

Plasminogen kringle 5는 plasminogen kringles 1-4로 구성된 내생의 혈관 신생 억제제인 angiostatin과 같이 내피세포의 분열을 강력하게 억제한다고 알려져 있다. 본 연구에서는 plasminogen kringle 5의 재조합 단백질을 효모 발현 체계에서 생산하여 내피세포의 이동에 대한 저해 효과와 이에 대한 작용기전을 조사하였다 재조합 단백질 PK5는 plasminogen의 Thr456에서 Phe546까지 이르는 cDNA 부분을 ${\alpha}-factor$ prepro-peptide의 분비 신호 서열 뒤에 도입하여 Pichia pastoris GS115에서 발현시켰다. 메탄올 유도 후 얻은 배양액을 S-spin column을 이용하여 정제하였다. 정제된 단백질을 SDS-PACE하였을 때 약 10kDa의 단일 밴드를 나타냄을 확인할 수 있었다. 정제된 PK5는 bFGF나 VEGF에 의해 유도된 인간의 제대 유래 내피 세포의 이동을 약 500nM의 $IC_{50}$ 값으로 농도 의존적으로 감소시켰다. 내피 세포에 PK5 500M을 처리한 결과 bFGF에 의해 유도된 ERK1/2의 인산화를 감소시켰다 또한, PK5는 bFGF에 의해 유도된 내피세포의 골격 재형성을 강력하게 억제하는 것으로 관찰되었다. 따라서, 이러한 결과들은 효모 생산 PK5가 내피세포의 이동을 효과적으로 억제하며, 이는 ERK1/2의 활성과 세포골격의 재배열을 억제함으로써 나타나는 것으로 부분적으로 설명될 수 있다.

Keywords

References

  1. Cao, Y., A. Chen, S. S. An, R. W. Ji, D. Davidson and M. Llinas. 1997. Kringle 5 of plasminogen is a novel inhibitor of endothelial cell growth. J. Biol. Chem. 272, 22924-22928 https://doi.org/10.1074/jbc.272.36.22924
  2. Cao, Y., R. W. Ji, D. Davidson, J. Schaller, D. Marti, S. Sohndel, S. G. McCance, M. S. O'Reilliy, M. Llinas, J. Folkman. 1996. Kringle domains of human angiostatin. Characterization of the anti-proliferative activity on endothelial cells. J. BioI. Chem. 271, 29461-29467 https://doi.org/10.1074/jbc.271.46.29461
  3. Davidson, D. J., C. Haskell, S. Majest, A. Kherzai, D. A. Egan, K. A. Walter, A. Schneider, E. F. Gubbins, L. Solomon, Z. Chen, R. Lesniewski, J. Henkin. 2005. Kringle 5 of human plasminogen induces apoptosis of endothelial and tumor cells through surface-expressed glucose-regulated protein 78. Cancer Res. 65, 4663-4672 https://doi.org/10.1158/0008-5472.CAN-04-3426
  4. Gimbrone, M. A., R. S. Jr. Cotran, S. B. Leapman and J. Folkman. 1974. Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. Natl. Cancer Inst. 52, 413-427 https://doi.org/10.1093/jnci/52.2.413
  5. Gonzalez-Gronow, M., T. Kalfa, C. E. Johnson, G. Gawdi and S. V. Pizzo. 2003. The voltage-dependent anion channel is a receptor for plasminogen kringle 5 on human endothelial cells. J. Biol. Chem. 278, 27312-27318 https://doi.org/10.1074/jbc.M303172200
  6. Huang, C., K. Jacobson and M. D. Schaller. MAP kinases and cell migration. 2004. J. Cell. Sci. 117, 4619-4628 https://doi.org/10.1242/jcs.01481
  7. Jaffe, E. A., R. L. Nachman, C. G. Becker and C. K. Minick. 1973. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic clitelia. J. Clin. Invest. 52, 2745-2756 https://doi.org/10.1172/JCI107470
  8. Ji, W. R., F. J. Castellino, Y. Chang, M. E. Deford, H. Gray, X. Villarreal, M. E Kondli, D. N. Marti, M. Llinas, J. Schaller, R. A. Kramer, and P. A. Trail. 1998. Characterization of kringle domains of angiostatin as antagonists of endothelial cell migration, an important process in angiogenesis. Faseb J. 12, 1731-1738 https://doi.org/10.1096/fasebj.12.15.1731
  9. Ji, W. R., L. G. Barrientos, M. LIinas, H Gray, X. Villarreal, M. E. DeFord, F. J. Castellino, R. A. Kramer, and P. A. Trail. 1998. Selective inhibition by kringle 5 of human plasminogen on endothelial cell migration, an important process in angiogenesis. Biochem. Biophys. Res. Commun. 247, 414-419 https://doi.org/10.1006/bbrc.1998.8825
  10. Joe, Y. A., Y. K. Hong, D. S. Chung, Y. J. Yang, J. K. Kang, Y. S. Lee, S. I. Chang, W. K. You, H. Lee, and S. I. Chung. 1999. Inhibition of human malignant glioma growth in vivo by human recombinant plasminogen kringles 1-3. Int. J. Cancer 82, 694-699 https://doi.org/10.1002/(SICI)1097-0215(19990827)82:5<694::AID-IJC12>3.0.CO;2-C
  11. Kim, K. J., B. Li, J. Winer, M. Armanini, N. Gillett, H. S. Phillips and N. Ferrara. 1993. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844 https://doi.org/10.1038/362841a0
  12. Kim, H. K., Hong, Y. K., Park, H. E., Hong, S. H. and Joe, Y. A.. 2003. Secretory production of recombinant urokinase kringle domain in Pichia pastoris. J. Microbiol. Biotechnol. 13, 591-597
  13. Kim, K. S., Hong, Y. K., Joe, Y. A, Lee, Y., Shin, J. Y., Park, H. E., Lee, I. H., Lee, S. Y., Kang, D. K., Chang, S. I., Chung, S. I.. Anti-angiogenic activity of the recombenant kringle domain of urokinase and its specific entry into endothelial cells. 2003. J. Biol. Chem. 278, 11449-11456 https://doi.org/10.1074/jbc.M212358200
  14. Kim, J. S., Yu, H. K, Ahn, J. H., Lee, H. J., Hong, S. W., Jung, K. H., Chang, S. I., Hong, Y. K., Joe, Y. A, Byun, S. M., Lee, S. K., Chung, S. I. and Yoon, Y.. 2004. Human apolopoprotein(a) kringle V inhibits angiogenesis in vitro and in vivo by interfering with the activation of focal adhesion kinases. Biochem. Biophys. Res. Commun. 313, 534-540 https://doi.org/10.1016/j.bbrc.2003.11.148
  15. Lee, T. H., Rhim, T. and Kim, S. S.. 1998. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J. Biol. Chem. 273, 28805-28812 https://doi.org/10.1074/jbc.273.44.28805
  16. Magnusson, S., L. Sottrup-Jensen, H. Claeys, M. Zajdel and T. E. Petersen. 1975. Proceedings: Complete primary structure of prothrombin. Partial primary structures of plasminogen and hirudin. Thromb. Diath. Haemorrh. 34, 562-563
  17. McLean, J. W., J. E. Tomlinson, W. J. Kuang, D. L. Eaton, E. Y. Chen, G. M. Fless, A. M. Scanu and R. M. Lawn. 1987. cDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132-137 https://doi.org/10.1038/330132a0
  18. Morales-Ruiz, M., D. Fulton, G. Sowa, L. R. Languino, Y. Fujio, K. Walsh, W. C. Sessa. 2000. Circ. Res. 86, 892-896 https://doi.org/10.1161/01.RES.86.8.892
  19. Moser, T. L., D. J. Kenan, T. A. Ashley, J. A. Roy, M. D. Goodman, U. K. Misra, D. J. Cheek and S. V. Pizzo. 2001. Endothelial cell surface F1-F10 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc. Natl. Acad. Sci. U. S. A. 98, 6656-6661 https://doi.org/10.1073/pnas.131067798
  20. Moser, T. L., M. S. Stack, I. Asplin, J. J. Enghild, P. Hojrup, L. Everitt, S. Hubchak, H. W. Schnaper, S. V. Pizzo. 1999. Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc. Natl. Acad. Sci. U. S. A. 96, 2811-2816 https://doi.org/10.1073/pnas.96.6.2811
  21. O'Reilly, M. S., L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, J. Folkman. 1994. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315-328 https://doi.org/10.1016/0092-8674(94)90200-3
  22. O'Reilly, M. S., T. Boehm, Y. Shing, N. Fukai, G. Vasios, W.S. Lane, E. Flynn, J. R. Birkhead, B. R. Olsen, J. Folkman. 1997. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88, 277-285 https://doi.org/10.1016/S0092-8674(00)81848-6
  23. Parangi, S., M. S. O'Reilly, G. Christofori, L. Holmgren, J. Grosfeld, J. Folkman and D. Hanahan. 1996. Antiangiogenic therapy of transgenic mice impairs de novo tumor growth. Proc. Natl. Acad. Sci. U. S. A. 93, 2002-2007 https://doi.org/10.1073/pnas.93.5.2002
  24. Pennica, D., W. E. Holmes, W. J. Kohr, R. N. Harkins, G. A. Vehar, C. A. Ward, W. F. Bennett, E. Yelverton, P. H. Seeburg, H. L. Heyneker, D. A. Goeddel, D. Collen. 1983. Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature 301, 214-221 https://doi.org/10.1038/301214a0
  25. Redlitz, A., G. Daum, E. H. Sage. 1998. Angiostatin diminishes activation of the mitogen-activated protein kinases ERK-1 and ERK-2 in human dermal microvascular endothelial cells. J. Vase. Res. 36, 28-34 https://doi.org/10.1159/000025623
  26. Rousseau, S., F. Houle and J. Hout. Integrating the VEGF signals leading to antin-based motility in vascular endothelial cells. 2000. Trends Cardiovasc Med. 10, 321-327 https://doi.org/10.1016/S1050-1738(01)00072-X
  27. Steffens, G. J., W.A. Gunzler, F. Otting, E. Frankus and L. Flohe. 1982. The complete amino acid sequence of low molecular mass urokinase from human urine. Hoppe Seylers Z. Physiol. Chem. 363, 1043-1058 https://doi.org/10.1515/bchm2.1982.363.2.1043
  28. Tarui, T., M. Majumdar, L. A. Miles, W. Ruf and Y. Takada. 2002. Plasmin-induced migration of endothelial cells. A potential target for the anti-angiogenic action of angiostatin. J. Biol. Chem. 277, 33564-33570 https://doi.org/10.1074/jbc.M205514200
  29. Tournaire, R., M. R Simon, F. I. noble, A. Eichmann, P. England and J. Pouyssegur. A short synthetic peptide inhibits signal transduction, migration and angiogenesis mediated by Tie2 receptor. 2004. EMBO Reports 5, 262-267 https://doi.org/10.1038/sj.embor.7400100
  30. Troyanovsky, B., T. Levchenko, G. Mansson, O. Matvijenko and L. Holmgren. 2001. Angiomotin: an angiostatin binding protein that regulates endothelial cell migration and tube formation. J. Cell. Biol. 152, 1247-1254 https://doi.org/10.1083/jcb.152.6.1247