DOI QR코드

DOI QR Code

Isolation of Acinetobacter calcoaceticus BP-2 Capable of Degradation of Bisphenol A

Bisphenol A 분해균주 Acinetobacter calcoaceticus BP-2의 분리 및 bisphenol A 분해 특성

  • Kwon, Gi-Seok (The School of Bioresource Sciences, Andong National University) ;
  • Kim, Dong-Geol (The School of Bioresource Sciences, Andong National University) ;
  • Lee, Jung-Bok (The School of Bioresource Sciences, Andong National University) ;
  • Shin, Kee-Sun (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kum, Eun-Joo (Department of Food and Nutrition, Andong National University) ;
  • Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
  • 권기석 (안동대학교 생명자원과학부) ;
  • 김동걸 (안동대학교 생명자원과학부) ;
  • 이중복 (안동대학교 생명자원과학부) ;
  • 신기선 (한국생명공학연구원) ;
  • 금은주 (안동대학교 식품영양학과) ;
  • 손호용 (안동대학교 식품영양학과)
  • Published : 2006.12.01

Abstract

Bisphenol A (BPA), 2,2-bis(4-hydroxyphenyl) propane, has been widely used as a monomer for production of epoxy resins and polycarbonate plastics, and final products of BPA include adhesives, protective coatings, paints, optical lens, building materials, compact disks and other electrical parts. Since BPA is a toxic chemical to elicit acute cell cytotoxicity and chronic endocrine disrupting activity, the degradation of BPA has been focused during last decades. To overcome the problem of photo-, and chemical-degradation of BPA, in this study, a bacterium that is able to biodegrade BPA, was isolated. The bacterium, isolated froln the soil of plastic factory, was identified as Acinetobacter calcoaceticus (strain BP-2) based on physiological and 16S rDNA sequencing analysis. A. calcoaceticus BP-2 was able to grow in the presence of $1140{\mu}g\;ml^{-1}$ BPA. Biodegradation experiments showed that BP-2 mineralized BPA via 4-hydroxybenzoic acid and 4-hydroxyacetophenone, and average degradation rate was $53.3{\mu}g\;ml^{-1}\;day^{-1}$ under optimal conditions (pH 7 and $30^{\circ}C$). In high density resting cell $(3.5g-dcw.1^{-1})$ experiments, the maximal degradation rate was increased to $89.7{\mu}g\;ml^{-1}\;h^{-1}$. Our results suggest that BP-2 has high potential as a catalyst for practical BPA bioremediation.

BPA는 에폭시 수지 및 플라스틱 생산의 단량체로서 사용되어 왔으며, 접착제, 페인트, 광학렌즈, 건축자재, 전자제품 소재 등 다양한 제품을 생산하는 데 사용되고 있다. 그러나 BPA의 급성세포독성 및 내분비교란활성이 보고되면서 BPA의 분해에 대한 연구가 집중되고 있다. 본 연구에서는 BPA의 광분해 및 화학적 분해의 문제점을 극복하고, 실제적 BPA의 생물학적 분해를 목표로 BPA분해균을 플라스틱 공장의 토양으로부터 분리하였다. 분리균주 중 가장 활성이 우수한 BP-2는 5mM의 BPA처리에서 성장할 수 있었으며, pH 7, $30^{\circ}C$의 최적 배양조건에서 $53.3{\mu}g\;ml^{-1}\;day^{-1}$의 분해속도를 나타내었다. 균주 동정결과 BP-2는 Acinetobacter calcoaceticus로 확인되었으며, 3.5g-건조중량$1^{-1}$의 고농도 휴식 세포 반응 결과 $89.7{\mu}g\;ml^{-1}\;h^{-1}$의 BPA분해속도를 나타내었다. 이러한 결과는 고농도 세포농도를 유지하는 경우, BP-2균주가 실제적 BPA분해를 위한 생물촉매로 사용될 수 있음을 제시하고 있다.

Keywords

References

  1. Ash, M., and I. Ash. 1995. Handbook of plastic and rubber additives. Grower, Hampshire, UK
  2. Atkinson, A, and D. Roy. 1995. In vitro conversion of environmental estrogenic chemical bisphenol-A to DNA binding metabolite(s). Biochem. Biophys. Res. Commun. 210, 424-433 https://doi.org/10.1006/bbrc.1995.1678
  3. Chen, M.-Y., M. Ike, and M. Fujita. 2002. Acute toxicity, mutagenicity, and estrogenicity of bisphenol-A and other bisphenols. Environ.Toxicol. 17, 80-86 https://doi.org/10.1002/tox.10035
  4. Hirooka, T., Y. Akiyama, N. Tsuji, T. Nakamura, H. Nagase, K. Hirata, and K. Miyamoto. 2003. Removal of hazardous phenols by microalgae under photoautotrophic conditions. J. Biosci. Bioeng. 95, 200-203 https://doi.org/10.1016/S1389-1723(03)80130-5
  5. Howard, P. H. 1989. Handbook of Environmental Fate and Exposure Data, vol. 1. Lewis Publisher, Chelsea, MI
  6. Ike, M., M.-Y. Chen, C.-S. Jin, and M. Fujita. 2002. Acute toxicity, mutagenicity, and estrogenicity of biodegradation products of bisphenol-A. Environ. Toxicol. 17, 457-461 https://doi.org/10.1002/tox.10079
  7. Kang, J.-H., and F. Kondo. 2002. Bisphenol A degradation by bacteria isolated from river water. Arch. Environ. Contam. Toxicol. 43, 265-269 https://doi.org/10.1007/s00244-002-1209-0
  8. Kang, J.-H., and F. Kondo. 2002. Effects of bacterial counts and temperature on the biodegradation of bisphenol A in river water. Chemosphere 49, 493-498 https://doi.org/10.1016/S0045-6535(02)00315-6
  9. Kang J.-H., N. Ri, and F. Kondo. 2004. Streptomyces sp. strain isolated from river water has high bisphenol A degradability. Lett. Appl. Microbiol. 39, 178-180 https://doi.org/10.1111/j.1472-765X.2004.01562.x
  10. Klecka, G. M., S. J. Gonsior, R. J. West, P. A. Goodwin, and D. A. Markham. 2001. Biodegradation of bisphenol A in aquatic environments: river die-away. Environ. Toxicol. Chem. 20, 2725-2735 https://doi.org/10.1002/etc.5620201211
  11. Kwon, G.S., J. E. Kim, T. K. Kim, H. Y. Sohn, S. C. Koh, K.-S. Shin, and D.-G. Kim. 2002. Klebsiella pneumonia KE-1 degrades endosulfan without formation of the toxic metabolite metabolites, endosulfan sulfate. FEMS Lett. 215. 255-259 https://doi.org/10.1111/j.1574-6968.2002.tb11399.x
  12. Lobos, J. H., T. K. Lein, and T. M. Su. 1992. Biodegradation of bispehnol A and other bisphenols by a gram-negative aerobic bacterium. Appl. Environ. Microbiol. 58, 1823-1831
  13. Olea, N., R. Pulgar, P. Perez, M. F. Olea-Serrano, A. Rivas, A. Novillo-Fertrell, V. Pedraza, A. M. Soto, and C. Sonnenschein. 1996. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Persp. 104, 298-305 https://doi.org/10.2307/3432888
  14. Ronen, Z., and A. Abeliovich. 2000. Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl. Environ. Microbiol. 66, 2372-2377 https://doi.org/10.1128/AEM.66.6.2372-2377.2000
  15. Ryoko, K. N., T. Yoshiyasu, and N. Ryushi. 2002. Identification of estrogenic activity of chlorinated bisphenol A using a GFP expression system. Environ. Toxicol. Pharmacol. 12, 27-35 https://doi.org/10.1016/S1382-6689(02)00011-X
  16. Samuelsen, M., C. Olsen, J. A. Holme, E. Meussen-Elholm, A. Bergmann, and J. K. Hongslo. 2001. Estrogen-like properties of brominated analogs of bisphenol A in the MCF-7 human breast cancer cell line. Cell Biol. Toxicol.17,139-151 https://doi.org/10.1023/A:1011974012602
  17. Spivack, J., T. K. Leib, and J. H. Lobos. 1994. Novel pathway for bacterial metabolism of Bisphenol A. J.Biol.Chem. 269, 7323-7329
  18. Staples, C. A., P. B. Dorn, G. M. Klecka, S. T. O'Block, and L. R. Harris. 1998. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36, 2149-2173 https://doi.org/10.1016/S0045-6535(97)10133-3
  19. West, R. J., P. A. Goodwin, and G. M. Klecka. 2001. Assessment of the ready biodegradability of bisphenol A. Bull. Environ. Contam. Toxicol. 67, 106-112 https://doi.org/10.1007/s001280097
  20. Yamamoto, T., and A. Yasuhara. 2000. Determination of bisphenol A migrated from polyvinyl chloride hoses by GC/MS. Bunseki Kagaku 49, 443-447 https://doi.org/10.2116/bunsekikagaku.49.443
  21. Yamamoto, T. and A. Yashuhara. 2002. Chlorination of bisphenol A in aqueous media: formation of chlorinated bisphenol A congeners and degradation to chlorinated phenolic compounds. Chemosphere 46, 1215-1223 https://doi.org/10.1016/S0045-6535(01)00198-9
  22. Yoon, J. H., S. T. Lee, S. B. Kim, W. Y. Kim, M. Goodfellow, and Y. H. Park. 1997. Restriction fragment length polymorphism analysis of PCR-amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int. J. Syst. Bacteriol. 47, 111-114 https://doi.org/10.1099/00207713-47-1-111

Cited by

  1. Protection by Chrysanthemum zawadskii extract from liver damage of mice caused by carbon tetrachloride is maybe mediated by modulation of QR activity vol.4, pp.2, 2010, https://doi.org/10.4162/nrp.2010.4.2.93