DOI QR코드

DOI QR Code

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity

E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구

  • Kim, Kyung-Hee (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea) ;
  • Kim, Sang-Soo (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea) ;
  • Kim, Goo-Young (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea) ;
  • Rhim, Hyang-Shuk (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea)
  • 김경희 (가톨릭대학교 생명의과학과) ;
  • 김상수 (가톨릭대학교 생명의과학과) ;
  • 김구영 (가톨릭대학교 생명의과학과) ;
  • 임향숙 (가톨릭대학교 생명의과학과)
  • Published : 2006.12.01

Abstract

Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.

E. coli HtrA (High temperature requirement protein A)의 human homologue 중 하나인 HtrA1은 IGFBP를 절단하여 IGF의 활동을 조절하는 serine protease으로 알려졌다. HtrA1의 serine protease 활성이 여러 질병의 발병 mechanism과 연관성을 가진 것으로 예상되고 있지만, 이런 상관관계를 밝히기 위해서 기본적으로 필요한 다량의 HtrA1 단백질의 발현 및 정제조건과 HtrA1 serine protease의 최적 활성조건이 확립되어 있지 않은 상황이다. 따라서 본 연구에서는 pGEX 시스템을 이용하여 E. coli에서 mature HtrA1인 ${\Delta}149(WT)$와 catalytic site mutant인 ${\Delta}149(S328A)$를 85%의 순도로 1 liter 배양 시, 정제된 단백질을 각각 $400{\mu}g,\;520{\mu}g$ 얻을 수 있는 발현조건을 정립하였다. 또한 HtrA1 serine protease 활성은 protease의 농도와 substrate와의 반응시간에 dependent하며, substrate와의 반응온도가 $42^{\circ}C$일 때 최적의 serine protease활성을 나타내는 것을 알 수 있었다. 특히 $200{\mu}M$의 HtrA1 serine protease를 $37^{\circ}C$에서 3시간 반응 시켰을 때, substrate로 사용한 ${\beta}-casein$의 약 50%가 절단되는 것을 관찰하였다. 따라서 이 반응조건에 사용한 HtrA1의 양을 1 unit으로 하여 HtrA1의 serine protease활성을 여러 조건에서 비교 분석할 수 있다 본 연구에서 정립한 mature HtrA1을 다량으로 얻을 수 있는 발헌 및 정제조건과 serine protease 최적 활성조건은 HtrA1의 serine protease 활성과 생물학적 기능의 상관관계를 이해하는데 활용될 수 있을 것이다.

Keywords

References

  1. Baldi A, A. De Luca, M. Morini, T. Battista, A. Felsani , F. Baldi, C. Catricala, A. Amantea, D. M. Noonan, A. Albini, P. G. Natali, D. Lombardi, M. G. Paggi. 2002. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 21, 6684-6688 https://doi.org/10.1038/sj.onc.1205911
  2. Chien J, J. Staub, SI. Hu, M. R. Erickson-Johnson, F. J. Crouch, D. I. Smith, R. M. Crowl, S. H. Kaufmann, V. Shridhar. 2004. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23, 1636-1644 https://doi.org/10.1038/sj.onc.1207271
  3. Cilenti. L., M. M. Soundarapandian, G. A. Kyriazis, V. Stratico, S. Singh, S. Gupta, J. V. Bonventre, E. S. Alnernri, A. S. Zervos. 2004. Regulation of HAX-1 Anti-apoptotic Protein by Omi/HtrA2 Protease during Cell Death. J. BioI. Chem. 279, 50295-50301 https://doi.org/10.1074/jbc.M406006200
  4. Clausen T, C. Southan, M. Ehrmann. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10, 443-455 https://doi.org/10.1016/S1097-2765(02)00658-5
  5. David L. Nelson and Michael M. Cox. 2000. Lehninger Principles of Biochemistry. pp. 243-269, 3rd eds., Worth Publishers. 41 Madison Avenue, New York
  6. Grau S, A. Baldi, R. Bussani, X. Tian, R. Stefanescu, M. Przybylski, P. Richards, S. A. Jones, V. Shridhar, T. Clausen, M. Ehrmann. 2005. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc. Natl. Acad. Sci. U. S. A. 102, 6021-6026 https://doi.org/10.1073/pnas.0501823102
  7. Grau S, P. J. Richards, C. Hughes, B. Caterson, A. S. Williams, U. Junker, S. A. Jones, T. Clausen, M. Ehrmann. 2006. The role of human HtrA1 in arthritic disease. J. Biol. Chem. 281, 6124-6129 https://doi.org/10.1074/jbc.M500361200
  8. Hu SI, M. Carozza, M. Klein, P. Nantermet, D. Luk, R. M. Crowl. 1998. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic catilage. J. Biol. Chem. 273, 34406-34412 https://doi.org/10.1074/jbc.273.51.34406
  9. Kim G. Y., S. S. Kim, H. J. Park. and H. Rhim. 2005. Expression of human SOD1 and mutant SOD1 (G93A) in E. coli and identification of SOD1 as a substrate of HtrA2 serine protease. Journal of Life Science 16, 716-722 https://doi.org/10.5352/JLS.2006.16.5.716
  10. Kim S. S., K. H. Kim, H. J. Park, E. H. Hur and H. Rhim. 2005. Inhibitory Effect if the N-terminal GST on the Tautomerase Activity of Macrophage Migration Inhibitory Factor. Journal of Life Science 6, 961-967 https://doi.org/10.5352/JLS.2005.15.6.961
  11. Nam M. K., H. M. Park, J. Y. Choi, H. J. Park, K. C. Chung, S. Kang and H. Rhim. 2005. The Expression Patterns of Human Parkin in E. coli and Mammalian Cells. Journal of Life Science 6, 916-922 https://doi.org/10.5352/JLS.2005.15.6.916
  12. Park H. J., S. S. Kim, Y. M. Seong, K. H. Kim, H. G. Goo, E. J. Yoon, D. S. Min, S. Kang, H. Rhim. 2006. Beta-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease: Implications for the physiological function of HtrA2 in the mitochondria. J. Biol. Chem. 281, 34277-34287 https://doi.org/10.1074/jbc.M603443200
  13. Park H. J., Y. M. Seong, J. Y. Choi, S. Kang, H. Rhim. 2004. Alzheimer's disease-associated amyloid beta interacts with the human serine protease HtrA2/Omi. Neurosci. Lett. 357, 63-67 https://doi.org/10.1016/j.neulet.2003.11.068
  14. S. C. Cary, T. Shank, J. Stein. 1998. Worms bask in the extreme temperatures. Nature 391, 545-546 https://doi.org/10.1038/35286
  15. Seong Y. M., C. Han, J. Y. Choi, H. J. Park, G. H. Seong, M. K Nam, S. S. Kim, I. K. Kim, S. Kang, Rhim H. 2003. High-level Expression of Human Procaspase-9 in Escherichia coli and Purification of its GST-tagged Recombinant Protein. Kor. J. Microbiol. 39, 216-222
  16. Sekine. K, Y. Hao, Y. Suzuki, R. Takahashi, T. Tsuruo, M. Naito. 2005. HtrA2 cleaves Apollon and induces cell death by lAP-binding motif in Apollon-deficient cells. Biochem. Biophys. Res. Commun. 330, 279-285 https://doi.org/10.1016/j.bbrc.2005.02.165
  17. Seong Y. M., H. J. Park, G. H. Seong, J. Y. Choi, S. J. Yoon, B. R. Min, S. Kang, H. Rhim. 2004. N-terminal truncation circumvents proteolytic degradation of the human HtrA2/Omi serine protease in Escherichia coli: rapid purification of a proteolytically active HtrA2/Omi. Protein Expr. Purif. 33, 200-208 https://doi.org/10.1016/j.pep.2003.10.002
  18. Seong Y. M., J. Y. Choi, H. J. Park, K. J. Kim, S. G. Ahn, G. H. Seong, I. K. Kim, S. Kang, H. Rhim. 2004. Autocatalytic processing of HtrA2/Omi is essential for induction of caspase-dependent cell death through antagonizing XIAP. J. Biol. Chem. 279, 37588-37596 https://doi.org/10.1074/jbc.M401408200
  19. Spiess C, A. Beil, M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in widely conserved heat shock protein. Cell 37, 339-347
  20. Srinivasula. S. M., S. Gupta, P. Datta, Z. Zhang, R. Hegde, N. Cheong, T. Fernandes-Alnernri, E. S. Alnernri. 2003. Inhibitor of Apoptosis Proteins Are Substrates for the Mitochondrial Serine Protease Omi/HtrA2. J. Biol. Chem. 278, 31469-31472 https://doi.org/10.1074/jbc.C300240200
  21. Suzuki Y, Y. Imai, H. Nakayama, K. Takahashi, K. Takio, R. Takahashi. 2001. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613-621 https://doi.org/10.1016/S1097-2765(01)00341-0
  22. Trencia. A., F. Fiory, M. A. Maitan, P. Vito, A. P. M. Barbagallo, A. Perfetti, C. Miele, P. Ungaro, F. Oriente, L. Cilenti, A. S. Zervos, P. Formisano, F. Beguinot. 2004. Omi/HtrA2 Promotes Cell Death by Binding and Degrading the Anti-apoptotic Protein ped/pea-15. J. Biol. Chem. 279, 46566-46572 https://doi.org/10.1074/jbc.M406317200
  23. Tushiya A, M. Yano, J. Tocharus, H. Kojima, M. Fukumoto, M. Kawaichi, C. Oka. 2005. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37, 323-336 https://doi.org/10.1016/j.bone.2005.03.015
  24. Zhang X, Z. Chang. 2004. Temperature dependent protease activity and structural properties of human HtrA2 protease. Biochemistry (Mosc) 69, 687-692 https://doi.org/10.1023/B:BIRY.0000033743.09806.1a