CRITICAL HEAT FLUX ENHANCEMENT

  • Chang, Soon-Heung (Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology) ;
  • Jeong, Yong-Hoon (Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology) ;
  • Shin, Byung-Soo (Department of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology)
  • 발행 : 2006.12.01

초록

In this paper, works related to enhancement of the CHF are reviewed in terms of fundamental mechanisms and practical applications. Studies on CHF enhancement in forced convection are divided into two categories, CHF enhancement of internal flow in tubes and enhancement of CHF in the nuclear fuel bundle. Methods of enhancing the CHF of internal flows in tubes include enhancement of the swirl flow using twisted tapes, a helical coil, and a grooved surface; promotion of flow mixing using a hypervapotron; altering the characteristics of the heated surface using porous coatings and nano-fluids; and changing the surface tension of the fluid using additives such as surfactants. In the fuel bundle, mixing vanes or wire wrapped rods can be employed to enhance the CHF by changing the flow distributions. These methods can be applied to practical heat exchange systems such as nuclear reactors, fossil boilers, fusion reactors, etc.

키워드

참고문헌

  1. W.R. Gambill, R.D. Bundy, R.W. Wansbrough, 'Heat Transfer, Burnout, and Pressure Drop for Water in Swirl Flow through Tubes with Internal Twisted Tapes', Chem. Eng. Prog. Symp. Series 57 (32), pp. 127-137, (1961)
  2. W.R. Gambill, R.D. Bundy, 'High-Flux Heat Transfer Characteristics of Pure Ethylene Glycol in Axial and Swirl Flow', AIChE J. 9 (1), pp. 55-59, (1963) https://doi.org/10.1002/aic.690090112
  3. M. Araki et al., 'Burnout Experiments on the Externally-Finned Swirl Tube for Steady-State and High-Heat Flux Beam Stops', Fusion Engineering and Design, Vol. 9, pp. 231-236, (1989) https://doi.org/10.1016/S0920-3796(89)80038-9
  4. H. Nariai, F. Inasaka, W. Fujisaki, H. Ishiguro, 'Critical Heat Flux of Subcooled Flow Boiling in Tubes with Internal Twisted Tapes', Proc. 7th Nuclear Thermal Hydraulics, pp. 38-46, (1991)
  5. J. Boscary, J. Fabre, J. Schlosser, 'Critical Heat Flux of Water Subcooled Flow in One-Side Heated Swirl Tubes', Int. J. Heat Mass Transfer 42, pp. 287?309, (1999) https://doi.org/10.1016/S0017-9310(98)00108-2
  6. J. Schlosser, J. Boscary, 'Thermal Hydraulic Tests at NET: ITER Relevant Conditions on Divertor Targets Using Swirl Tubes', Proc. NURETH 6, pp. 815-824, (1993)
  7. J. Schlosser, J. Boscary, F. Escourbiac, M. Merola, G. Vieider, 'Thermal Hydraulic Design of High Heat Flux Elements for Controlled Fusion', Proc. the 15th UIT National Heat Transfer Conference, pp. 45-59, (1997)
  8. L.S. Tong, 'A Phenomenological Study of Critical Heat Flux', ASME paper, 75-HT-68
  9. R. Viskanta, 'Critical Heat Flux for Water in Swirling Flow', Nuclear Science and Engineering, Vol. 10, p. 202, (1961) https://doi.org/10.13182/NSE61-A25959
  10. E.O. Moeck, G.A. Wikhammer, I.P.L. MacDonald and J. G. Collier, 'Two Methods of Improving the Dryout Heat Flux for High-Pressure Steam/Water Flow', AECL Report No. AECL-2109
  11. B. Matzner, J. Casterline, E.O. Moeck and G.A. Wikhammer, 'Critical Heat Flux in Long Tubes at 1000 psia with and without Swirl Promoters', ASME Paper No. 65-WA/HT-30, (1965)
  12. E.W. Sams, 'Heat Transfer and Pressure Drop Characteristics of Wire-Coil Type Turbulence Promoters', TID-7529 Pt. 1, Book 2, pp. 390-415, (Nov. 1957)
  13. J.F. Novozhilov and V.K. Migai, 'Intensifying Convective Heat Transfer within Tubes by Means of Induced Roughness', Teploenergetica, Vol. 11 [9], pp. 60-63, (1964)
  14. P. Kumar and R.L. Judd, 'Heat Transfer with Coiled Wire Turbulence Promoters', Can. J. Chem. Eng., Vol. 48, pp. 378-383, (1970) https://doi.org/10.1002/cjce.5450480406
  15. R. Sethumadhavan and M. Raja Rao, 'Turbulence Flow Heat Transfer and Fluid Friction in Helical-Wire-Coil-Inserted Tubes', Int. J. Heat Mass Transfer, Vol. 26, pp. 1833-1845, (1983) https://doi.org/10.1016/S0017-9310(83)80154-9
  16. S.B. Uttarwar and M. Raja Rao, 'Augmentation of Laminar Flow Heat Transfer in Tubes by Means of Wire Coil Insert', J. Heat Transfer, Vol. 107, pp. 930-935, (1985) https://doi.org/10.1115/1.3247523
  17. C.P. Celata, M. Cumo, and A. Mariani, 'Enhancement of CHF Water Subcooled Flow Boiling in Tubes Using Helically Coiled Wires', Int. J. Heat Mass Transfer, Vol. 37[1], p. 53, (1994) https://doi.org/10.1016/0017-9310(94)90161-9
  18. Y. Kabata, R. Nakajima and K. Shioda, 'Enhancement of Critical Heat Flux for Subcooled Flow Boiling of Water in Tubes with a Twisted Tape and with a Helically Coiled Wire', Intl. Conf. on Nuclear Engineering, ASME, p.639, (1996)
  19. H.S. Swenson, J.R. Carver, G. Szoeke et al., 'The Effects of Nucleate Boiling Versus Film Boiling on Heat Transfer in Power Boiler Tubes', Trans. ASME A 84, pp. 365?371, (1962)
  20. K. Nishikawa, T. Fuju, S. Yoshida, 'Investigation into Burnout in Grooved Evaporator Tubes', Trans. JSME 75, pp. 700?707, (1972)
  21. P.B. Whalley, 'The Effect of Swirl on Critical Heat Flux in Annular Two-phase Flow', Int. J. Multiphase Flow 5, pp. 211-217, (1979) https://doi.org/10.1016/0301-9322(79)90018-1
  22. Nishikawa et al., 'Improvement in Heat Transfer Performance at High Heat Fluxes with Internally Grooved Boiler Tubes', Memoirs of the Faculty of Engineering, Kyushu University, Vol. 35(2), (1975)
  23. L. Cheng, T. Chen, 'Flow Boiling Heat Transfer in a Vertical Spirally Internally Ribbed Tube', Int. J. Heat Mass Transfer. Vol. 37, pp. 229-236, (2001) https://doi.org/10.1007/PL00013294
  24. M. Iwabushi et al., 'Heat Transfer Characteristics of Rifled Tubes in Near Critical Pressure Region', Proc. 7th Int. Heat Transfer Conf., Munich, Vol. 5, pp. 313-318, (1982)
  25. W. Kohler et al., 'Heat Transfer and Pressure Loss in Rifled Tubes', Proc. 8th Int. Heat Transfer Conf., San Francisco, Vol. 5, pp. 2861-2865, (1986)
  26. L. Cheng, G. Xia, 'Experimental Study of CHF in a Vertical Spirally Internally Ribbed Tube under the Condition of High Pressure', Int. J. Therm. Sci. Vol. 41, pp. 396-400, (2002) https://doi.org/10.1016/S1290-0729(02)01330-3
  27. L. Cheng, G. Xia, 'Critical Heat Flux in a Uniformly Heated Vertical Spirally Internally Ribbed Tube under a Wide Range of High Pressure', Proc. 34th. National Heat Transfer Conf., Pittsburgh, pp. 20-22, (2000)
  28. G.D Zarnett, M.E. Charles, 'Cocurrent Gas-Liquid Flow in Horizontal Tubes with Internal Spiral Ribs', Can. J. Chem. Eng. Vol. 47, p. 238, (1969) https://doi.org/10.1002/cjce.5450470314
  29. C.H. Kim, I.C. Bang and S.H. Chang, 'Critical Heat Flux Performance for Flow Boiling of R-134a in Vertical Uniformly Heated Smooth Tube and Rifled Tubes', Int. J. Hat Mss Transfer, Vol. 48 [14], pp.2868-2877, (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.039
  30. M. Iwabuchi, M. Tateiwa, H. Haneda, 'Heat Transfer Characteristics of Rifled Tubes in the Near Critical Pressure Region', Proc. 7th Int. Heat Transfer Conf., Munich, pp. 313-318, (1982)
  31. M. Araki, K. Sato, S. Suzuki, M. Akiba, 'Critical-Heat-Flux Experiment on the Screw Tube under One Sided Heating Conditions', Fusion Technology, Vol. 29, No. 4, pp. 519-528, (1996) https://doi.org/10.13182/FST96-A30695
  32. J. Boscary, M. Araki, S. Suzuki, K. Ezato, M. Akiba, 'Critical Heat Flux in Subcooled Water Flow of One-Side-Heated Screw Tubes', Fusion Technology, Vol.35, No. 3, pp. 289-296, (1999) https://doi.org/10.13182/FST99-A82
  33. G. Cattadori, G.P. Gaspari, A. Mariani, G.P. Celata, G. Zummo, M. Cumo, G.P. Celata, 'Hypervapotron Technique in Subcooled Flow Boiling CHF', Experimental Thermal and Fluid Science, Vol. 7, No. 3, pp.230-240, (1993) https://doi.org/10.1016/0894-1777(93)90006-5
  34. K. Ezato, S. Suzuki, K. Sato, M. Taniguchi, M. Hanada, M.Araki, M. Akiba, 'Critical Heat Flux Test on Saw-Toothed Fin Duct under One-sided Heating Conditions', Fusion Engineering and Design, Vol. 56/57, pp. 291-295, (2001) https://doi.org/10.1016/S0920-3796(01)00302-7
  35. G.P. Celata, 'Recent Achievement on the Thermal Hydraulics of High Heat Flux Components in Fusion Reactors', Exp. Thermal & Fluid Sci., Vol. 7, pp. 263-278, (1993) https://doi.org/10.1016/0894-1777(93)90050-S
  36. G. Janeschitz, T. Ando, A. Antipenkov, V. Barabash, S. Chiocchio, G. Federici, C. Ibbott, 'Divertor Development for ITER', Fusion Engineering and Design, Vol. 39/40, pp.173-187, (1998) https://doi.org/10.1016/S0920-3796(97)00134-8
  37. M. Kaviany, 'Principles of Heat Transfer in Porous Media', Second Edition, Springer, New York, (1995)
  38. S.G. Liter and M. Kaviany, 'Pool-boiling CHF Enhancement by Modulated Porous Layer Coating: Theory and Experiment', Int. J. Heat Mass Transfer, Vol. 44, No. 18, pp. 4287-4311, (2001) https://doi.org/10.1016/S0017-9310(01)00084-9
  39. C.N. Ammerman and S. M. You, 'Enhancing Small-Channel Convective Boiling Performance using a Microporous Surface Coating', Transactions of ASME, Vol. 123, pp. 976-983, (2001) https://doi.org/10.1115/1.1388300
  40. J.P. O'Connor and S.M. You, 'A Painting Technique to Enhance Pool Boiling Heat Transfer in FC-72', ASME J. Heat Transfer, Vol. 117(2), pp. 387?393, (1995) https://doi.org/10.1115/1.2822534
  41. J.Y. Chang and S.M. You, 'Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72', ASME J. Heat Transfer Vol. 118(4), pp. 937?943, (1996) https://doi.org/10.1115/1.2822592
  42. M.B. Dizon, J. Yang, F.B. Cheung, 'Effects of Surface Coating on Nucleate Boiling Heat Transfer from a Downward Facing Surface'. ASME Summer Heat Transfer Conference, (2003)
  43. J. Yang, F.B. Cheung, 'A Hydrodynamic CHF Model for Downward Facing Boiling on a Coated Vessel', Int. J. Heat and Fluid Flow, Vol. 26, No. 3, pp. 474-484, (2005) https://doi.org/10.1016/j.ijheatfluidflow.2004.09.003
  44. G.S. Hwang, M. Kaviany, 'Critical Heat Flux in Thin, Uniform Particle Coatings', Int. J. Heat Mass Transfer, Vol. 49, No. 5/6, pp. 844-849, (2006) https://doi.org/10.1016/j.ijheatfluidflow.2004.09.003
  45. D. Schroeder-Richter, S. Yildiz and G. Bartsch, 'Effect of Porous Coating on Critical Heat Flux', Int. Comm. Heat Mass Transfer, Vol. 23, No. 4, pp. 463-471, (1996) https://doi.org/10.1016/j.ijheatfluidflow.2004.09.003
  46. D.L. Youchison, R.E. Nygren', S . Griegoriev' and D.E. Driemeyer, 'CHF Comparison of an Attached-Fin Hypervapotron and Porous-Coated Channels', The 18th Symposium on Fusion Engineering, pp 388 ? 391, (25-29 Oct, 1999) https://doi.org/10.1109/FUSION.1999.849863
  47. M.S. Sarwar, Y.H. Jeong and S.H. Chang, 'Subcooled Flow Boiling CHF Enhancement with Porous Surface Coatings', Int. J. Heat Mass Transfer, (accepted), 2006 https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.011
  48. I.C. Bang and S.H. Chang, 'Boiling Heat Transfer Performance and Phenomena of Al2O3 Water Nano-Fluids from a Plain Surface in a Pool', Int. J. Heat Mass Transfer, Vol. 48, No. 12, pp. 2407-2419, (2005) https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.047
  49. S.M. You, J.H. Kim and K.H. Kim, 'Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer', Applied Physics Letters, Vol. 83, No. 16, pp. 3374-3376, (2003) https://doi.org/10.1063/1.1619206
  50. H. Kim, J. Kim and M. H. Kim, 'Effect of Nanoparticles on CHF Enhancement in Pool Boiling of Nano-Fluids', Int. J. Heat Mass Transfer, Vol. 49, No.25/26, pp. 5070-5074, (2006) https://doi.org/10.1016/j.ijheatmasstransfer.2006.07.019
  51. T. Inoue, Y. Teruya, M. Monde, 'Enhancement of Pool Boiling Heat Transfer in Water and Ethanol/Water Mixtures with Surface-Active Agent', Int. J. Heat Mass Transfer, Vol. 47, No. 25, pp. 5555-5563, (2004) https://doi.org/10.1016/j.ijheatmasstransfer.2004.05.037
  52. W. Wu, H. Lin, Y. Yang and J. Maa, 'Critical Heat Flux in Pool Boiling Aqueous Surfactant Solutions as Determined by the Quenching Method', Int. J. Heat Mass Transfer, Vol. 37, No. 15, pp. 2377-2379, (1994) https://doi.org/10.1016/0017-9310(94)90377-8
  53. G.P. Celata, M. Cumo and T. Setaro, 'Critical Heat Flux in Upflow Convective Boiling of Refrigerant Binary Mixtures', Int. J. Heat Mass Transfer, Vo. 37, No. 7, pp. 1143-1153, (1994) https://doi.org/10.1016/0017-9310(94)90200-3
  54. Y.H. Jeong, S.H. Chang and W.-P Baek, 'Critical Heat Flux Experiments on the Reactor Vessel Wall Using 2-D Slice Test Section', Nuclear Technology, Vol. 152, No. 2, pp. 162-169, (2005) https://doi.org/10.13182/NT05-A3667
  55. A. Beutler, I. Greiter, A. Wagner, L. Hoffmann, S. Schreier and G. Alefeld, 'Surfactants and Fluid Properties', International Journal of Refrigeration, Vol. 19, No. 5, pp. 342-346, (1996) https://doi.org/10.1016/S0140-7007(96)00034-5
  56. Walter Frost and Charles J. Klppenhan, 'Bubble Growth and Heat-Transfer Mechanisms in the Forced Convection Boiling of Water Containing a Surface Active Agent', Int. J. Heat Mass Transfer, Vol. 10, pp. 931-949, (1967) https://doi.org/10.1016/0017-9310(67)90070-1
  57. V.M. Wasekar, R.M. Manglik, 'A Review of Enhanced Heat Transfer in Nucleate Pool Boiling of Aqueous Surfactant and Polymeric Solutions', J. Enhanced Heat Transfer, Vol. 6, pp135-150, (1999) https://doi.org/10.1615/JEnhHeatTransf.v6.i2-4.70
  58. G. Hetsroni, M. Gurevich, A. Mosyak, R. Rozenblit and L.P. Yarin, 'Subcooled Boiling of Surfactant Solutions', Int. J. Multiphase Flow, Vol. 28, pp. 347-361, (2002) https://doi.org/10.1016/S0301-9322(01)00062-3
  59. G. Hetsroni, M. Gurevich, A. Mosyak, R. Rozenblit and Z. Segal, 'Boiling Enhancement with Environmentally Acceptable Surfactants', Int. J. Heat and Fluid Flow, Vol. 25, pp. 841-848, (2004) https://doi.org/10.1016/j.ijheatfluidflow.2004.05.005
  60. F. de Crecy, 'The Effect of Grid Assembly Mixing Vanes on Critical Heat Flux Values and Azimuthal Location in Fuel Assemblies', Nuclear Engineering and Design, Vol. 149, pp. 233-241, (1994) https://doi.org/10.1016/0029-5493(94)90289-5
  61. J.B. Chung, W.-P. Baek and S.H. Chang, 'Effects of the Spacer and Mixing Vanes on Critical Heat Flux for Low-Pressure Water at Low-Velocities', Int. Comm. Heat and Mass Transfer, Vol. 23 No. 6, pp. 757-765, (1996) https://doi.org/10.1016/0735-1933(96)00059-0
  62. B.S. Shin, S.H. Chang, 'Experimental Study on the Effect of Angles and Positions of Mixing Vanes on CHF in a $2{\times}2$ Rod Bundle with Working Fluid R-134a', Nuclear Engineering and Design, Vol. 235, No. 16, pp. 1749-1759, (2005) https://doi.org/10.1016/j.nucengdes.2005.02.006
  63. I. L. Pioro, D. C. Groeneveld, S. S. Doerffer, Y. Guo, S.C. Cheng and A. Vasi, 'Effects of Flow Obstacles on the Critical Heat Flux in a Vertical Tube Cooled with Upward Flow of R-134a', Int. J. Heat Mass Transfer, Vol. 45, pp. 4417-4433, (2002) https://doi.org/10.1016/S0017-9310(02)00150-3
  64. Xiao Zejun, Song Xianhui, Lang Xuemei, Bai Xuesong, Ma Jieliang, Wang Pengfei and Chen Bingde, 'Experimental Research Progress on Critical Heat Flux of Chinese PWR', Nuclear Engineering and Design, Vol. 229, pp. 213-222, (2004) https://doi.org/10.1016/j.nucengdes.2003.12.005
  65. H. Anglart and O. Nylund, 'CFD Application to Prediction of Void Distribution in Two-Phase Bubbly Flows in Rod Bundles', Nuclear Engineering and Design, Vol. 163, pp. 81-98, (1996) https://doi.org/10.1016/0029-5493(95)01160-9
  66. H. Anglart, O. Nylund, N. Kurul and M. Z. Podowski, 'CFDPrediction of Flow and Phase Distribution in Fuel Assemblies with Spacers', Nuclear Engineering and Design, Vol. 177, pp. 215-228, 1997 https://doi.org/10.1016/S0029-5493(97)00195-7
  67. Kazuo Ikeda, Yasushi Makino and Masaya Hoshi, 'Single-Phase CFD Applicability for Estimating Fluid Hot-Spot Locations in a 5 5 Fuel Rod Bundle', Nuclear Engineering and Design, Vol. 236, pp. 1149-1154, (2006) https://doi.org/10.1016/j.nucengdes.2005.11.006
  68. M. K. Au-Yang, 'Flow-Induced Vibration of Power and Process Plant Components', ASME Press, (2001)
  69. X. Cheng and U. Muller, 'Critical Heat Flux and Turbulent Mixing in Hexagonal Tight Rod Bundles', Int. J. Multiphase Flow, Vol. 24, pp. 1245-1263, (1998). https://doi.org/10.1016/S0301-9322(98)00027-5