PL FIBRATORS AMONG PRODUCTS OF HOPFIAN MANIFOLDS

CHANGSIK JEOUNG AND YONGKUK KIM

ABSTRACT. Suppose that F is a closed t-aspherical PL n-manifold with finite, sparsely abelian $\pi_1(F)$ and A is a closed aspherical PL m-manifold with hopfian, normally cohopfian $\pi_1(A)$. If $\chi(F) \neq 0 \neq \chi(A)$, then $F \times A$ is a codimension-(t+1) PL fibrator.

1. Introduction

Approximate fibrations form a useful class of maps, in part, because they provide computable relationships involving the domain, image and homotopy fiber.

Fix a closed, connected n-manifold N. A proper PL map $p: M \to B$ from an (n+k)-manifold M into a polyhedron B is N-like if each fiber collapses to an n-complex homotopy equivalent to N; N is a codimension-k PL fibrator if, for every N-like map $p: M \to B$, where M is a PL (n+k)-manifold, p is an approximate fibration. Codimension-k PL fibrators are necessarily codimension-(k-1) PL fibrators as well. Codimension-k PL fibrators are abundant. In this note we find new codimension-k PL fibrators among products of hopfian manifolds.

2. Preliminaries

A group Γ is hopfian if every epimorphism $\Gamma \to \Gamma$ is an automorphism. A group Γ is hyperhopfian if every endomorphism $\psi : \Gamma \to \Gamma$ with normal image and cyclic cokernel is necessarily an automorphism. A group Γ is called normally co-hopfian if every monomorphism of Γ that image of Γ is a normal subgroup of Γ is an automorphism, i.e., it is not isomorphic

Received March 2, 2006.

²⁰⁰⁰ Mathematics Subject Classification: Primary 57N15; 57R65, Secondary 57M99.

Key words and phrases: approximate fibration, codimension-k fibrator.

This research was supported by KRF-2004-202-C00043 (R05-2004-000-10964-0).

to any of its proper normal subgroups. The question whether the direct product of normally cohopfian groups are again normally cohopfian is still open. Say that a group Γ is sparsely abelian if it contains no nontrivial abelian normal subgroup A such that Γ/A is isomorphic to a normal subgroup of Γ . Groups Γ that are both sparsely abelian and normally cohopfian have the useful feature that every homomorphism $\Gamma \to \Gamma$ with, at worst, abelian kernel necessarily is an automorphism. For brevity a group Γ which is both normally cohopfian and sparsely abelian will be said to have Property NCSA. The fundamental groups of most connected sums of manifolds have Property NCSA (See [5]).

So far the best well-known fact for codimension-2 PL fibrators can be described as follows;

PROPOSITION 2.1. [6, 7] Let N be a closed PL n-manifold. If either $\pi_1(N)$ is hopfian and $\chi(N) \neq 0$ or $\pi_1(N)$ is hyperhopfian, then N is a codimension-2 PL fibrator.

Any closed manifold that cyclically cover itself (nontrivially) fails to be a codimension-2 PL fibrator, for example, S^1 and $RP^n\#RP^n$ [2, Theorem 4.2]. Hence the mapping torus of a periodic self homeomorphism of any closed manifold fails to be a codimension-2 PL fibrator.

Whether the product of fibrators is again a fibrator is still open. There are some cases that have affirmative answers (See [4]).

PROPOSITION 2.2. [4, Theorem 5.7] Let F be a closed PL n-manifold with finite $\pi_1(F)$ and $\chi(F) \neq 0$ and let A be a closed aspherical PL m-manifold with hopfian $\pi_1(A)$ and $\chi(A) \neq 0$. Then $F \times A$ is a codimension-2 PL fibrator.

The following proposition is useful when we determine whether a product of two manifolds is not a codimension-k PL fibrator.

PROPOSITION 2.3. Let N_1^n and N_2^m be closed manifolds. If N_1 is not a codimension-k PL fibrator, then $N_1 \times N_2$ is not a codimension-k PL fibrator.

Proof. Take an N_1 -like map $p:M^{n+k}\to B^k$ which fails to be an approximate fibration. Then the composition map

$$M^{n+k} \times N_2^m \xrightarrow{projection} M^{n+k} \xrightarrow{p} B^k$$

fails to be an approximate fibration.

DEFINITION. An ANR Y is said to be t-aspherical if $\pi_i(Y) = 0$ whenever $1 < i \le t$.

PROPOSITION 2.4. [5, Corollary 2.6] Suppose N is a closed, hop-fian PL manifold satisfying: (i) N is a codimension-2 PL fibrator, (ii) N is t-aspherical, and (iii) $\pi_1(N)$ has Property NCSA. Then N is a codimension-(t+1) PL fibrator.

3. Fibrator properties of products of hopfian manifolds

LEMMA 3.1 For any group homomorphism $f: G \to H$ and any normal subgroup N of G, the homomorphic image f(N) of N is normal in f(G).

Proof. Given $x \in f(N)$ and $z \in f(G)$, f(n) = x and f(g) = z for some $n \in N$ and $g \in G$. Then $z^{-1}xz = f(g)^{-1}f(n)f(g) = f(g^{-1}ng) \in f(N)$, since $N \triangleleft G$.

DEFINITION. A group G is incommensurable with another group H if for every homomorphism $\varphi: G \to H$ is trivial.

Any finite group G is incommensurable with any torsion free group H, for any $g \in G$, the homomorphic image of g must have a finite order; and perfect groups are incommensurable with all abelian groups.

Given two groups G and H, we denote elements of the direct product $G \times H$ by ordered pairs (a, b), where $a \in G$ and $b \in H$. The structure of subgroups of the direct product $G \times H$ wasn't known to the general public until Jacques Thévenaz described the subgroups of $G \times H$ in 1997 [9].

The elementary lemmas that follow expose the role of incommensurability here.

LEMMA 3.2. Suppose that a group G is incommensurable with a group H and that $\varphi: G \times H \to G \times H$ is a group homomorphism. Consider the following diagram:

where i and j are the inclusion maps, pr_1 and pr_2 are the projection maps. Then we have the followings:

1. [4, Lemma 3.2] $\varphi(G \times 1) \subset G \times 1$.

- 2. $h(H) = pr_2(\varphi(G \times H))$. Moreover, if $\varphi(G \times H) \triangleleft G \times H$, then $h(H) \triangleleft H$.
- 3. $\ker g \times pr_2(\ker \varphi \cap 1 \times H) \subset pr_1(\ker \varphi \cap G \times 1) \times pr_2(\ker \varphi \cap 1 \times H) \subset \ker \varphi \subset pr_1(\ker \varphi) \times pr_2(\ker \varphi) \subset pr_1(\ker \varphi) \times \ker h$. In particular, φ is a monomorphism, then g is a monomorphism.

Proof. (1) The homomorphism

$$pr_2 \circ \varphi \circ i : G \xrightarrow{i} G \times H \xrightarrow{\varphi} G \times H \xrightarrow{pr_2} H$$

is trivial, for G is incommensurable with H. Hence $pr_2 \circ \varphi \circ i(G) = pr_2(\varphi(G \times 1)) = 1$, i.e., $\varphi(G \times 1)$ doesn't have a factor of H, so $\varphi(G \times 1) \subset G \times 1$.

(2) Clearly $h(H) \subset pr_2(\varphi(G \times H))$. Conversely, given an element y of $pr_2(\varphi(G \times H))$, take an x in G such that $(x,y) \in \varphi(G \times H)$. Then $(x,y) = \varphi(a,b)$ for some (a,b) in $G \times H$. By (1) $\varphi(a,1) = (\alpha,1)$ for some α in G. Put $\varphi(1,b) := (\beta,\gamma) \in G \times H$. Then $(x,y) = \varphi(a,b) = \varphi((a,1)(1,b)) = \varphi(a,1)\varphi(1,b) = (\alpha,1)(\beta,\gamma) = (\alpha\beta,\gamma)$. Hence $\gamma = y$. Then,

$$b \longmapsto_{h} (1,b) \stackrel{\varphi}{\longmapsto} (\beta,y) \stackrel{pr_2}{\longmapsto} y ,$$

i.e., h(b) = y for some b in H, so the latter element belongs to h(H), as desired.

Moreover, if $\varphi(G \times H) \triangleleft G \times H$, then since pr_2 is onto, by Lemma 3.1 $h(H) = pr_2(\varphi(G \times H)) \triangleleft H$.

(3) First we claim that $\ker g \subset pr_1(\ker \varphi \cap (G \times 1))$. Given any $x \in \ker g$, $(x,1) \in G \times 1$. By (1), $\varphi(x,1) = (a,1)$ for some a in G. Then $x \stackrel{i}{\longmapsto} (x,1) \stackrel{\varphi}{\longmapsto} (a,1) \stackrel{pr_1}{\longmapsto} a = 1$ and so $\varphi(x,1) = (1,1)$, i.e., $(x,1) \in \ker \varphi \cap (G \times 1)$, whence we have $x \in pr_1(\ker \varphi \cap (G \times 1))$.

Next, we show that $pr_2(\ker \varphi) \subset \ker h$. Given any $y \in pr_2(\ker \varphi)$, there exists an x in G such that $(x,y) \in \ker \varphi$. By (1), $\varphi(x,1) = (a,1)$ for some a in G. Since $(1,1) = \varphi(x,y) = \varphi(x,1)\varphi(1,y) = (a,1)\varphi(1,y)$, $\varphi(1,y)$ must be $(a^{-1},1)$. Then,

$$y \longmapsto \underbrace{(1,y) \longmapsto_{h} (a^{-1},1) \longmapsto_{h}^{pr_2}} 1$$
.

Therefore, $y \in \ker h$.

COROLLARY 3.3. If a finite group G is incommensurable with a group H and $\varphi: G \times H \to G \times H$ is a monomorphism, then $\varphi(G \times 1) = G \times 1$ and $h \equiv pr_2 \circ \varphi \circ j$ is a monomorphism.

Proof. Since φ is a monomorphism, by Lemma 3.2 (3), we have a injective endomorphism $g \equiv pr_1 \circ \varphi \circ i : G \to G$. It follows from the finiteness of G that g is an isomorphism. But by Lemma 3.2 (1), $\varphi(G \times 1) \subseteq G \times 1$. Then $\varphi(G \times 1) = G \times 1$.

Now, consider the sequence of homomorphisms

$$H \xrightarrow{j} G \times H \xrightarrow{\varphi \atop mono} G \times H \xrightarrow{pr_2} H.$$

Given any $z \in \ker(pr_2 \circ \varphi \circ j)$, $z \longmapsto (1,z) \stackrel{\varphi}{\longmapsto} (a,b) \stackrel{pr_2}{\longmapsto} b = 1$. Since $(a,b) = (a,1) \in G \times 1$ and $\varphi(G \times 1) = G \times 1$, we have $\varphi(\gamma,1) = (a,1)$ for some $\gamma \in G$. Since $\varphi(\gamma,1) = \varphi(1,z)$ and φ is a monomorphism, $(1,z) = (\gamma,1)$ whence we have z = 1. Consequently, we have $\ker(pr_2 \circ \varphi \circ j) = 1$.

LEMMA 3.4. Suppose that a finite group G is incommensurable with a group H. If H is a normally co-hopfian group, so is $G \times H$.

Proof. Let $\varphi: G \times H \to G \times H$ be a monomorphism with $\varphi(G \times H) \triangleleft G \times H$. By Lemma 3.2 (2), $(pr_2 \circ \varphi \circ j)(H) \triangleleft H$. It follows from the normally co-hopficity of H and Lemma 3.2 (3) that $pr_2 \circ \varphi \circ j$ is an isomorphism.

Now, we show that φ is a surjective map. Given any $(x,y) \in G \times H$, we divide (x,y) into (x,1)(1,y). Since $\varphi(G \times 1) = G \times 1$, there exists an $\alpha \in G$ such that $\varphi(\alpha,1) = (x,1)$. And since $pr_2(1,y) = y \in H$ and $pr_2 \circ \varphi \circ j$ is an isomorphism, $(1,\beta) \stackrel{\varphi}{\longmapsto} (z,y) \longmapsto y$ for some $(z,y) \in \varphi(1 \times H)$ and $(1,\beta) \in 1 \times H$. We again divide (z,y) into (z,1)(1,y). Then, $\varphi(\omega,1) = (z,1)$ for some $(\omega,1) \in G \times 1$ and since φ is a homomorphism, the preimage of (1,y) must be (ω^{-1},β) . Hence we have

$$\varphi(\alpha\omega^{-1},\beta) = \varphi(\alpha,1)\varphi(\omega^{-1},\beta) = (x,1)(1,y) = (x,y).$$

Now, we state the main result.

THEOREM 3.5. Suppose that F is a closed t-aspherical PL n-manifold with finite, sparsely abelian $\pi_1(F)$ and A is a closed aspherical PL m-manifold with hopfian, normally cohopfian $\pi_1(A)$. If $\chi(F) \neq 0 \neq \chi(A)$, then $F \times A$ is a codimension-(t+1) PL fibrator.

Proof. First, we note that $F \times A$ is a codimension-2 PL fibrator according to Proposition 2.2, and is t-aspherical, for $\pi_i(F \times A) = \pi_i(F) \times \pi_i(A)$.

Now we show that $\pi_1(F \times A)$ has Property NCSA. Set $G := \pi_1(F)$ and $H := \pi_1(A)$. Then H is torsion free, for A is aspherical. Hence G is incommensurable with H. Since H is normally cohopfian, by Lemma 3.4, $G \times H$ is normally co-hopfian. Moreover, we show that $G \times H$ is sparsely abelian. Let $\varphi : G \times H \to G \times H$ be a homomorphism with $\varphi(G \times H) \triangleleft G \times H$ and abelian $\ker \varphi$. But since $\ker \varphi$ is abelian, by Lemma 3.2 (3), $\ker(g \equiv pr_1 \circ \varphi \circ i)$ is also abelian. Since A is aspherical, by work of Rosset [8], $\chi(A) \neq 0$ implies that H has no nontrivial abelian normal subgroup. Therefore, we have $\ker \varphi \subset G \times 1$. But since G is incommensurable with H, by Lemma 3.2 (3), we have $\ker \varphi = \pi \cap G$. Then $\ker \varphi = \pi \cap G$ is sparsely abelian. Consequently, the conclusion follows from Proposition 2.4. \square

References

- [1] G. Baumslag and D. Solitar, Some two-generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc. 68 (1962), 199–201.
- [2] R. J. Daverman, Submanifold decompositions that induce approximate fibrations, Topology Appl. 33 (1989), no. 2, 173–184
- [3] ______, Hyperbolic groups are hyper-Hopfian, J. Austral. Math. Soc. Ser. A 68 (2000), no. 1, 126-130.
- [4] R. J. Daverman, Y. H. Im, and Y. Kim, *Products of Hopfian manifold and codimension-2 fibrators*, Topology Appl. **103** (2000), no. 3, 323–338.
- [5] ______, PL fibrator properties of partially aspherical manifolds, Topology Appl. 140 (2004), no. 2-3, 181–195.
- [6] Y. Kim, Strongly Hopfian manifolds as codimension-2 fibrators, Topology Appl. **92** (1999), no. 3, 237-245.
- [7] ______, Manifolds with hyperHopfian fundamental group as codimension-2 fibrators, Topology Appl. 96 (1999), no. 3, 241–248.
- [8] S. Rosset, A vanishing theorem for Euler characteristics, Math. Z. 185 (1984), no. 2, 211-215.
- [9] J. Thévenaz, Maximal subgroups of direct products, J. Algebra 198 (1997), no. 2, 352–361.

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA

E-mail: yongkuk@knu.ac.kr