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EMBEDDING OF THE TEICHMULLER
SPACE INTO THE GOLDMAN SPACE

Hong CHAN KIM

ABSTRACT. In this paper we shall explicitly calculate the formula
of the a gebraic presentation of an embedding of the Teichmiiller
space T(M) into the Goldman space G(M). From this algebraic
presentation, we shall show that the Goldman’s length parameter
on G(M) is an isometric extension of the Fenchel-Nielsen’s length
parameter on T(M).

1. Introduction

A convez real projective structure on a smooth surface M is a repre-
sentation of M as a quotient space /T of a convex domain  C RP? by a
discrete group I' € PGL(3,R) acting properly and freely. If x(M) < 0,
then the equivalence classes of convex real projective structures on M
form a deformation space G(M) called the Goldman space.

The study of RP? structures has been quite active. Ehresmann,
Kuiper, Benzécri, Kobayashi, and Thurston have done important work.
Recently Goldman and S. Choi lead this field.

The deformation space of hyperbolic structures on M is called the
Teichmiiller space and denoted by T(M). Choi and Goldman [2] proved
G(M) is a comoonent of the deformation space RP?(M) of real projective
structure on M and G(M) contains the Teichmiiller space T(M).

Goldman [5] defined the length parameters ¢,m on G(M). They
seems to be an extension of Fenchel-Nielsen’s length parameter £ on
T(M). But during the calculation of the translation length of Goldman
and Fenchel-Nielsen’s parameters, author realized that they do not fit.
Thus we define the modified Goldman’s length parameters on G(M).
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The purpose of this paper is to formulate the explicit algebraic presen-
tation of an embedding of (M) into G(M) which isometrically extends
Fenchel-Nielsen’s length parameter on T(M) to the modified Goldman’s
length parameters on G(M).

In Section 2, we recall some preliminary definitions about (G, X)-
structures on a smooth manifold M. In Section 3, we describe the re-
lation between the deformation space D (M) of (G, X)-structures on M
and the orbit space Hom(7, G)™~/G. In Section 4, we recall the positive
hyperbolic elements of SL(3,R). In Section 5, we give some knowledge
about the Hilbert metric. In Section 6, we compare the relations be-
tween the Poincaré metric and the Hilbert metric on the unit disc. In
Section 7, we define an embedding formula of hyperbolic structures into
convex real projective structures. To realize a hyperbolic structure on
M as a convex real projective structure, we define an isometry H? — Q
and an embedding PSL(2,R) — SL(3,R), where 2 is a strictly convex
subset of RIP? with the conic boundary. In Section 8, we show the mod-
ified Goldman’s length parameters £, m on G(M) isometrically extend
Fenchel-Nielsen’s length parameter £.

2. Preliminaries

The followings are from Kim’s paper [7]. For more detail see Kim [7].

Let X be a smooth manifold and G a connected algebraic Lie group.
We assume that G acts on X strongly effectively; that is, if g1,92 € G
agree on a nonempty open set of X, then g = go. We start this section
with examples of strongly effective action.

EXAMPLE 2.1. Let H? = {z € C | Im(z) > 0} be the upper half plane.
Then SL(2,R) acts on H? by

' a b az+b
(2.1) A-z—<c d)'z_cz—l-d'
Since we have A-z = (—A) -z for any A € SL(2,R) and z € H?, the Lie
group PSL(2,R) = SL(2,R)/41 acts strongly effectively on HZ2.

EXAMPLE 2.2. Let RP? be the space of all lines through the origin in
R3. For a nonzero vector v in R3, the corresponding point in RP? will
be denoted by [v]. Then GL(3,R) acts on RP? by
(2.2) B - [v] = [Bv].

Since the scalar matrices R* C GL(3,R) acts trivially on RP?, the Lie
group PGL(3,R) = GL(3,R)/R* acts strongly effectively on RP?.
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Let € be an open subset of X. A map ¢ : & — X is called locally-
(G, X) if for each component W C €, there exists g € G such that
dlw = glw. Since G acts strongly effectively on X, above element g
is unique for each component. Clearly a locally-(G, X) map is a local
diffeomorphism. A (G, X)-structure on a connected smooth n-manifold
M is a maximal collection of coordinate charts {(Ua, %)} such that

1. G acts strongly effectively on X.

2. {U,} is an open covering of M.

3. For each o, 4 : Uy — X is a diffeomorphism onto its image.

4. If two coordinate charts U, NUg # @, then the transition function

Ygo Yol Ya(Ua NUg) — ¥(Uq N Up) is locally-(G, X).

The (PSL(Z,IR),]HIZ)—structures and (PGL(B,R),RW)—structures on a
smooth surface M are called the hyperbolic structures and real projective
structures on I/ respectively.

A smooth manifold equipped with a (G, X)-structure is called a
(G, X)-manifold. If N is a (G, X)-manifold and f : M — N is a lo-
cal diffeomorphism, then we can give the induced (G, X)-structure on
M via f. In particular every covering space of a (G, X )—manifold has the
canonically incuced (G, X)-structure.

A smooth map f : M — N of (G, X)-manifolds is called a (G, X)-
map if for each coordinate chart (U vy) on M and (V,¢y) on N, the
composition 9 o f ot Y (FHV)NU) = Py (fU)NV) is locally—
(G,X). If f: M — N is a diffeomorphism such that f and f1
(G, X)-maps, then f is called a (G, X)-diffeomorphism.

The following Development Theorem is the fundamental fact about
(G, X)-structures. See Thurston’s book [13] for details.

THEOREM 2.3. Let p : M — M denote a universal covering map
of a (G, X)-manifold M, and 7 the corresponding group of covering
transformatiors. Then

1. There exist a (G, X)-map dev : M — X (called the developing
map) and homomorphism h : 1 — G (called the holonomy homomor-
phism) such that for each v € m the following diagram commutes:

M dev X
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2. Suppose (dev’, 1) is another pair satisfying above conditions. Then
there exists g € G such that dev' = g odev and b’ = 14 o h, where
tg : G — G denotes the inner automorphism defined by g.

By Theorem 2.3, the developing pair (dev,h) is unique up to the
G-action by composition and conjugation respectively.

3. Deformation space of (G, X)-structures

For a smooth manifold M, consider a pair (f, N) where N is a (G, X)-
manifold and f : M — N is a diffeomorphism. Then M admits the
induced (G, X )-structure via f. The set of all such pairs (f, N) is denoted
by A(M). Then A(M) is the space of all (G, X)-structures on M. We
say two pairs (f, N) and (f', N') in A(M) are equivalent if there exists
a (G, X)-diffeomorphism g : N — N’ such that go f is isotopic to f’.
The set of equivalence classes A(M)/~ will be denoted by D (M) and
called the deformation space of (G, X)-structures on M.

The deformation space D (M) has the natural topology. Let Diff (M)°
be the space of all diffeomorphisms of M which are isotopic to the iden-
tity map Ips. Then we may think the deformation space D (M) consists
of diffeomorphisnis f : M — N to a (G, X)-manifold N modulo the
action of Diff(M)° given by g: f+— fog where g € Diff(M)°. Give
D (M) the quotient topology induced from the C*°-topology on the space
of diffeomorphisms f: M — N.

DEFINITION 3.1. Let M be a connected smooth surface. The defor-
mation space of hyperbolic structures on M is called the Teichmailler
space and denoted by T(M). The deformation space of real projective
structures on M is denoted by RP?(M).

The deformation space D(M) is closely related to Hom(w,G)/G the
orbit space of homomorphisms ¢ : # — G. The group G acts on
Hom(m, G) by conjugation; that is, for g € G and ¢ € Hom(w,G), the
action g - ¢ is defined by (g- ¢)(y) = go ¢d(y) o g~! where v € 7.

If G is an algebraic Lie group, then Hom(n, G) is an algebraic variety.
But generally Hom(7, G) is not smooth. Suppose ¢ € Hom(w,G) and
Z(¢) is the centralizer of ¢(m) in G. Goldman [3] showed ¢ is a non-
singular point of Hom(, G) if and only if dim Z(¢)/Z(G) = 0, where
Z(G) denotes the center of G. Let Hom(rm, G)™ be the set of nonsingular
points of Hom(w,G). Then G acts freely on the smooth Zariski open
subset Hom(w, G)~. But unfortunately Hom(m, G)~/G is generally not
Hausdorff. Let Hom(w, G)~~ be the subset of Hom(w, G)~ consisting
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of homomorphisms whose image does not lie in a parabolic subgroup
of G. Then Hom(nw,G)~~ is a Zariski open subset of Hom(w, G)~, and
Hom(w,G)~~ /G is a Hausdorff smooth manifold of dimension —dim G -
X(M). For more detail see Goldman's paper [3].

Suppose M is a closed surface. Taking the holonomy homomorphism
of a (G, X)-structure defines a map

hol : ®(M) — Hom(n,G)™" /G

which is a loca. homeomorphism. See Goldman [4] and Johnson-Millson
[6] for details. For a hyperbolic structures on M,

hol : ¥(M) — Hom(mr, PSL(2,R))”~/PSL(2,R)

is an embedding onto a real analytic manifold of dimension —3- (M) =
6g — 6. Thus the Teichmiiller space T(M) is diffeomorphic to R69-6
and an element of T(M) will be identified with a conjugacy class of
Hom(m, PSL(2,R))™~. Furthermore the developing map dev is a dif-
feomorphism from M onto a convex domain Q = dev(M) C H2. In this
case the holonomy homomorphism h is an isomorphism from 7 onto a
discrete subgroup I' = A(7) C PSL(2,R) which acts properly and freely
on Q. Thus M is diffeomorphic to the quotient space Q/T".
But for a real projective structures on a closed surface M,

hol : RP?*(M) — Hom(w, PGL(3,R))”~ /PGL(3,R)

is just a local homeomorphism. And the developing map is just a local
diffeomorphism and the developing image may be not convex. We can
find such examples in Sullivan and Thurston’s paper [12].

We consider the convex real projective structures on M. A domain
Q) C RP? is called convex if there exist a projective line I ¢ RP? such
that Q ¢ (RP? —[) and Q is a convex subset of the affine plane RP? — [.
A real projective structure on M is called convex if the developing map
dev: M — RP?isa diffeomorphism onto a convex domain in RP?. The
following fundamental theorem is due to Goldman [5].

THEOREM 3.2. Let M be a closed real projective surface. Then the
following statements are equivalent.

1. M has a convex real projective structure.

2. M is projectively diffeomorphic to a quotient space Q/I", where
2 C RP? is a convex domain and I' C PGL(3,R) is a discrete
group acting properly and freely on Q.

DEFINITION 3.3. The Goldman space G(M) is the subset of RP?(M)
consisting of the equivalence classes of convex real projective structures.
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Choi and Goldman ([2], [5]) proved that if M is a closed real projective
surface, then G(M) is a component of RP?(M) and the restriction

hol : G(M) — Hom(n, PGL(3,R))"~ /PGL(3,R)

is an embedding onto a real analytic manifold of dimension —8- (M) =
16g — 16. Thus the Goldman space G(M) is diffeomorphic to R*®9-16,
The Goldman space G(M) is an analogue of the Teichmiiller space T(M).
Classically known that T(M) embeds in G(M). That means every hy-
perbolic structure on M defines a convex real projective structure on M.
We shall explicitly calculate the formula of the algebraic presentation of
an embedding of (M) into G(M).

4. Positive hyperbolic elements

An element A of SL(2, R) is said to be hyperbolic if A has two distinct
real eigenvalues. Since the characteristic polynomial of A is f(\) =
A2 — X 4 1, where t = tr(A), A is hyperbolic if and only if tr(4)% > 4.

Let A be an element of PSL(2,R). Since the absolute value of trace
is still defined, A € PSL(2,R) is said to be hyperbolic if |tr(A)] > 2.
A hyperbolic element A in PSL(2,R) can be expressed by the diagonal
matrix

al 0] et a”l 0
) ot 0] (ot 0
via an SL(2, R)-conjugation where o > 1.
The homomorphism GL(3,R) — SL(3,R) defined by

B — (detB)"Y3B

induces an isomorphism PGL(3,R) = GL(3,R)/R* — SL(3,R). Thus
from now on we shall identify the groups PGL(3,R) and SL(3,R).

An element B € SL(3,R) is called positive hyperbolic if it has three
distinct positive real eigenvalues. If B is positive hyperbolic, then it can
be represented by the diagonal matrix

A0 O
(4.2) (OMO)
0 0 v

via an SL(3,R)-conjugation where Apyv =1land 0 < A < pu < v.
The following theorem is one of the analogues between hyperbolic
structures and convex real projective structures proved by Kuiper [9].

THEOREM 4.1. Let M be a closed oriented surface with x(M) < 0.



Embedding of Teichmiiller space into Goldman space 1237

1. If M is a hyperbolic surface, then every nontrivial element of ho-
lonomy group I' C PSL(2,R) is hyperbolic.

2. If M is a convex real projective surface, then every nontrivial ele-
ment of holonomy group I' C SL(3,R) is positive hyperbolic.

3. Either the boundary of the developing image is a conic in RP? or
is not C'*¢ for any € > 0.

It is known that the boundary 02 is a conic if and only if the convex
real projective structure on M arises from a hyperbolic structure on M.
Let Q be the domain in RP? defined by

(4.3) Q = {[x1, 22, 23] € RP? | 22 4 23 — 23 < 0}.

Then {2 has a conic boundary 0f). Let M be a surface with a hyperbolic
structure. Composing the developing map M — H? with an isometry
H? — Q C RP? and the holonomy homomorphism 7 — PSL(2,R)
with an embedding PSL(2,R) — SL(3,R) realizes M as a convex real
projective surface. Thus we shall define an isometry H? — Q and an
embedding PSL(2,R) — SL(3,R).

5. The Hilbert metric

To define an isometry H? — Q, we need a knowledge about the Hilbert
metric. Hilbert discovered a metric on a bounded convex domain §2 in R?
(or equivalently in C). This metric is related to the hyperbolic metric but
geodesics are still Euclidean segments. We recall some basic definitions
and properties. For more detail, see Kobayashi’s paper [8].

DEFINITION 5.1. Let 21, 29, 23, 24 be four points in the extended com-
plex numbers C = C U {oo} such that at least three points are distinct.
The cross-ratio of 21, 22, 23, 24 is defined by

(21 — 23)(22 — 24)
(21— 22)(23 — 2a)

(5.1) (21, 22, 23, 24] =

There are six different methods to define the cross-ratio on C. We
adopt this presentation since it is an easy way to understand the Hilbert
metric. The properties of this presentation are:

1. [zla 2924 23, Z4] - [245 23,23, Zl]-
2. [#1, 22, 23, 24] > 1 if distinct four points lie in a line segment such
that zo is between z; and z3 and z3 is between z5 and z4.
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DEFINITION 5.2. Let © be a bounded convex domain in C. For a
distinct points z,w in §2, the Hilbert distance between z and w is defined
by
(5.2) di(z,w) = log[z*, z, w, w*],

where z*,w* are the boundary points in 02 which lie on the straight
line joining z and w such that z lies between z* and w.

If we add dy(z,2) = 0, then the Hilbert distance dy defines a com-
plete metric on . A strictly convex domain is a convex domain whose
boundary 92 does not contain any line segment. Since a strictly convex
domain  does not contain any full straight line, the Hilbert distance
dy still defines a complete metric on €2 and has the following properties:

1. There is a unique geodesic between two points in €.
2. The geodesics are straight lines in Euclidean sense.

Kuiper [9] showed that the developing images Q C RP? of convex real
projective structures are strictly convex domains. This yields that every
developing image of a convex real projective structure of a closed surface
has the complete Hilbert metric.

Let a1, ag, a3, as be collinear distinct four points in RP2. Then there
exist corresponding four nonzero vectors vy, vq,v3,v4 of R® which are
contained in a plane P C R3; that is, aj, = [vg] = [zx, Yk, sk for each k.

REMARK 5.3. Since we use the z for the complex variable z = z + iy,
the s will be used for the third Euclidean coordinate in R3.

If P is the xy-plane, then the cross-ratio is defined by
T1 Ty T3 T4
If P is not the zy-plane, then the cross-ratio is defined by
T1+iy T2+iy2 T3+iys T4 +iy4]-
81 ’ 89 ’ 83 ’ S4 '

(5.3) (a1, a2, a3, a4] := [

(5.4) [al, az, as, (14] = [

PROPOSITION 5.4. Suppose z1, 22, 23, 24 are distinct four points which
are contained in a straight line in C. Let z;, = xp + 1y for each k. Then

x1,Z2,%3,24] if x1,To,x3, 14 are distinct
5.5) [21,29,23,24] = (1, 22, 23, \ T ..
(6:5) fz1, 22, 23, 2] { [y1, y2,y3, ya]l if 1, y2,¥3, ya are distinct.

By virtue of Proposition 5.4, the cross ratio of collinear distinct four
points a1, ag, as, ag of RP? should be one of the followings:

1 T2 T3 334] [fﬂl T2 I3 $4] |:y1 Y2 Y3 y4]
_)—,—,—|or|—,—=,—,—|or
Y1 Y2 Y3 Ya

[al,az,GS,GA] = s 3 ’
S1 82 83 84
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when the cross ratios of the right hand side are well-defined.

6. Relation between the Poincaré and the Hilbert metric

Let Hp = (H2,dp) be the upper half plane H2 = {2z € C | Im(z) > 0}
with the Poincaré metric dp; i.e., the lines in H p are the semi-circles cen-
tered at the z-axis and the rays orthogonal to the z-axis. The Poincaré
metric on Hp is defined by :

(6.1) dp(z,w) =log[#, z,w,w'],

where 2/, w' are the boundary points in the extended z-axis R = RU{oc}
which lie on the line joining z and w such that z is between 2’ and w.

The elements of PSL(2,R) act on Hp as the linear fractional trans-
formations in (2.1). Since the linear fractional transformations on C
preserve the cross-ratio, we have the following theorem.

THEOREM 6.1. The group Iy of orientation preserving isometries of
the upper half plane Hp is

(62) I =PSL(2,R) = { [Z Z

Let Dp = (D?,dp) be the unit disc D? = {z € C: |z| < 1} with the
Poincaré metric dp; i.e., the lines in Dp are the arcs of circles which
are orthogonal the boundary of D? and the segments through the origin.
The Poincaré metric on Dp is defined similarly as in (6.1).

The linear fractional transformation G : C — C defined by

] € PGL(2,R)

ad—bc:l}.

z2—1
—iz+1
maps {—1,0,1,00,%} to {—1,—1,1,4,0} respectively. Thus the restric-
tion of G1 to Hp is an orientation preserving isometry onto Dp with the
inverse G7! “* Fy such that

(6.3) w=Gy(z) =

w1
6.4 =F = .
(6.4) * 1(w) 1w+ 1
The following Theorem 6.2 is well-known fact. We can find a similar
result in Matsuzaki and Taniguchi’s book [10] or Ratcliffe’s book [11].

THEOREM 6.2. The group Iy of orientation preserving isometries of
the Poincaré disk Dp is

(6.5) I, = { { % s } € PGL(2,0C)

«a

ol - 192 =1}
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Proof. The linear fractional transformations G; and Fj correspond to

1 — 1
. 1 1 . .
the matrices 7 [ i1 J and 7 1] m SL(2,C) respectively.
Thus the isometry of Dp is the compositions of Gy o f o Fy, where f; is

an isometry of Hp in (6.2). In the matrix representation,

aenen = [ 7% 98)(2 2] 4
[Givim) () +itah u e 4]
(559 -i(559) ()i | L5 a

and |o|? — |82 = ad — bc = 1.

Conversely, if @ = oy +iag, = p1+1062 (for oy, a2, 51, B2 € R) are
the complex numbers in the group 7, then the corresponding element
in Il is

(6.6) [ a1+ B2 P+ ]

Br—oe a;— P

and (a1 + Bo)(c1 — B2) — (b1 + 02) (1 — a2) = |af® — B> = 1. This
completes the proof. O

Let Dy = (D?,dy) be the unit disc D? with the Hilbert metric dg;
i.e., the lines in Dy are the Euclidean line segments.

w
wl
dP(z7 'lU) = log[zla Z, W, wl]. dH(Z7 ’U)) = lOg[Z*, Z, W, w*]

FIGURE 1. The Poincaré and the Hilbert metric on D?

Let ¥ = {(z,9,s) € R? | 22 + y?® + s? = 1} be the unit sphere in R?
with the north pole n = (0,0,1). Consider the stereographic projection
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P: ¥ —{n} — R? defined by
T Yy
P(z,y,s) = ( ——) .

1-s'1-s
Then P is a conformal diffeomorphism with the inverse P~! such that
2 2 —1+u? +?
P_l(u.v): U ’ v 2, +uc+v ,_
L+u?+v2" 14+ u? + 02 1442 402

Let ¥_ = {(z,y,s) € £ | s < 0} be the lower hemisphere of ¥. Then the
restriction of P71 : R? — ¥ — {n} to the unit disk D? is diffeomorphic
to the lower hemisphere ¥_. See Figure 2.

n

P~ (w)
FIGURE 2. Inverse of the stereographic projection P~t

We define & mapping G2 : Dp — Dy by Ga = pgy o P71, where
Pay : R3 — R? is the projection to the zy-plain; i.e.,

2u 2v
6. = :
(6.7) Galw,v) <1+u2+v2’1+u2+v2)

Then G is a diffeomorphism with the inverse G5 L let F,: Dy — Dp

T Y
6.8 F x, = 3 .
(68) 2(2:9) <1+\/1—x2—y2 1+\/1—x2—y2)

In the complex variables w € Dp, z € Dy, the mappings G», Fy are
represented by
2w

(69) z = GQ(’IU) = m, w = F2(Z) = m

The result in Proposition 6.3 is also found in Thurston’s book [13].
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PROPOSITION 6.3. The mappings Go : Dp — Dy and Fy : Dy — Dp
preserve the lines in Dp and Dy.

Proof. First we will show that F5 carries the chords in Dy to the arcs
in Dp which are orthogonal to the boundary 0Dp. Using the rotations
on Dy, we may assume the cord is {x = a} for 0 < a < 1. If « = 0,
then the image of {x = 0} is itself {u = 0}. Suppose 0 < a < 1 and
(u,v) = Fa(a,y) € Dp. Then

a Y
(6.10) u= , v= .
14++4/1—a2—y2 14+ /1—a?—y?
Since a # 0, u is also non-vanishing. From (6.10), we get the relation

y = ve. Plug in y = v to the left equation of (6.10), we obtain the
following equation:

1 1—a?
11 . R :
(6.11) (u a) +uv =

Therefore the image of the cord {z = a} is the part of the circle centered
at C = (1,0) with the radius 1o’

4=,
Let O be the origin of R? and A, B the points in Dp which intersect
with the circle (6.11). Then A = (a,v1 —a?) and B = (a, -1 — a?).

We can easily compute

i

2
(OAY + (AT = (@ + (- ) + (1) = 5 = @O
By the Pythagorean theorem, ZOAC = 7/2. Similarly we can show
ZOBC = /2. Therefore the image of the cords in Dy are the arcs in
Dp which are orthogonal to the boundary 0Dp.

Conversely, let £p be an arc in Dp which is orthogonal to the bound-
ary 0Dp. Then ¢p is the Fp-image of the chord £g joining the boundary
points of the arc £p. Since G2 : Dp — Dy is the inverse mapping of F,
Go(lp) = Go(Fa2{€y)) = L. Thus Gy maps the lines in Dp to the lines
in Dg. ]

Unfortunately the mapping Fs : Dy — Dp is not an isometry.
Through a little modification of the Hilbert metric, we can show that
Fy : Dy — Dp is an isometry. Let Dy = (D?,dg/) be the unit disc D?
with the modified Hilbert metric dy+ defined by

(6.12) dp(2,w) = %dH(z,w).

The following Theorem 6.4 is also found in Thurston’s book [13]. I
give another proof of it.
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THEOREM 6.4. The mapping Fy : Dy — Dp is an isometry.

Proof. For 21,2y € D, let w; = Fy(z;) € Dp. Since dp(wy,wz) =
log [w], w1, ws, wh)] and dg(z1,22) = 3log 27, 21, 22, 23], it is equivalent
to show that

MIH

(6.13) [wy, w1, wp, wh)] = [2], 21, 22, 23 2.

! *

w2Z2
™
Wy = 2

FI1GURE 3. The image of lines through F» : Dy — Dp

Without loss of generality we assume that 21, 22 lie on the chord {z = a}
where 0 < a < 1. Let 21 = a+bi, 20 = a+cifor b < ¢, then the boundary
points of line segment in Dy are 2f = a— V1 —a?i,25 = a+V1+ a2
From the proof of Proposition 6.3, we know w] = 27 and wjy = z3.
Therefore the cross-ratio [w], w1, ws, w}] is

[a 1 1_2 ot b ate a++1 aQi]
_ . .a _
\/l—az—b2 1—|-\/1—a2—c2

- (otte) (st (orvizen)

_ ( —vl-a ) 1+\/1—a2—02 . 1+\/1—a2—b2
. — 2. atbi a+ci _ 1 _ 2.
(a l—a Z) (1+\/1—a2——b2) (1—}—\/1—(12—02) (a+ l—a 1')
et B (-4) _AB
= Cp)=CD
Since z1 a—i—bz is a point in the unit disc Dy, we have 1 —a? > b2.

Thus v1 —b>0, vV1—a?+b>0. Itfollows
(6.14) \/1—(12—62 (V1—0aZ —b)2(v/1— a2 +b)2

Hence (14+v1— a2 —b2) A = (1+V1 — a2 — b2)(a+V1 — a2 z)—(a—+—bi)
=(vV1—-a? - b)z'-f—\/li—a?—b?(a+\/1—a2 i)
=(VI—aZ— (\/1—a b+ (VI—a? +b)%(a+\/1—a,—2i))
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e (VT= a2 - b)

followings:

(eI

«. Through the similar computations, we have the

where

=(\/1—a2+b%i—(\/l—az—b%(a+ 1—a?i
d=(V1—-a?—c)zi+( 1—a2+c)%(a+\/1—a2i).

By simple calculation we can get the relation a3 = v §. Therefore the
theorem is proved as follow:

D=

A B
[w'l,wl,wg,wlz] = c' D
_(1+v1i-a®-)A (1+Vi-a®-—I)B
(1+vV1i—a2-0)C (1++vV1-a2~c%)D
_(\/l_—a—f—b)%a.(\/l———&?—kc)%ﬁ
C (VI-@+b)iy (VI-a2-0)3
_(VI=d2-b): (VI—d+0)s
WIS @+b)} (VI—al-o)

(WVIm@-h(i—E+9)
- +b) (a0

1
= [a——\/'l—aQi, a+bi, a+ci, a+\/1—a2i]2

= [, 21,2, 23)7 . O
THEOREM 6.5. The group Z3 of orientation preserving isometries of
the Hilbert disk Dy is
T _{ o’z + 3%z + 200
>~ 1 2Re(aBz) + [of? + |62

(6.15)

af? - 82 =1.
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Proof. Since Ga : Dp — Dy is an isometry with the inverse F, the
isometry of Dy has the expression such that Gs o fo o Fo, where fs is
an isometry of Dp in (6.5). Therefore the isometries of Dy are

(G2 ofo Fz)(z)

= (G20 f2) <——i——|7«:|_2)

- G az—l—ﬂl-l-\/l—lz ( )_ 2AB
T T\ Bz+al+ /I 2P) C2\5) = BB+ 44

2(a?z + 3%z + 206)(1 + /1 — |2]?)

" (2afz+ 2567 + 2o + 20BR)(1 + /1 |2?)

_ o’z + 3%z + 2008
2Re(afz) + |af? + |52
where «, 8 € C such that |a|? — |8 = 1. O
Let Qg = (Q,dy) be the convex domain § C RP? defined by
(6.16) Q= {[z,y,s] € RP? | 2% + ¢* ~ 5% < 0}

with the Hilbert metric dg. Then g is a strictly convex domain with
the conic boundary. Consider the mapping G3 : Dy — Qg defined by

(6.17) G3(z) = [Re(2),Im(z),1] = [z,y,1]

1et

for z = z+14y. Then (3 is a diffeomorphism with the inverse G5 Fy

such that

(6.18) By (fwy,sl) = = +i 2.

THEOREM 6.6. The mapping Gs : Dy — Qg is an isometry.

Proof. For two distinct points z; = x1+1y1, 220 = 22 +1 yg € Dy with
the boundary points 27, 25, we denote w; = G3(z;) and wj = G3(z}) for
each j. Then wj, w1, we, wj are four distinct collinear pomts in R]P’2 since
the corresponding four lines in R? are contained in the plane P spanned
by two linearly independent vectors (w1, 1, 1) and (z2,y2,1) in R3. Since
the plane P is not the zy-plane, by Definition (5.4) of the cross-ratio,

[wiwlaw%w;] = [[CL‘I, yf, 1}’ [xhyl’ 1]’ [$2’3/2> 1]7 [x;aygv 1“
= [z} +iy], 21+ iy, v2 +iy2, 5 + 1Y)

= [Z>1k7zl’ 22, Z;]
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This completes the proof because dy(wy,w2) = log [w}, w1, w2, w}] and
dH(Zl,ZQ) IIOg[Z:TaZlaZZ,z;]- O

7. Embedding of PSL(2,R) into SL(3,R)

The goal of this section is to define an isometry H — € and an
embedding of PSL(2, R) into SL(3,R). Since Hp and Dy are isometric
and Dy and Qpy are isometric, to define an isometry between H and
2, we need to change the metric on Q from dy to dys as in (6.12).
Let Qp = (Q,dg) be the strictly convex domain € in RP? with the
modified Hilbert metric dgs. Then the mapping G3 : Dy — Qg is also
an isometry.

THEOREM 7.1. The mapping G : Hp — Qg+ defined by
(7.1) G(2) =[2x, 2 +9y* — 1, 2? + 92 + 1]

is an isometry with the inverse G~ = F such that

72)  F(le,y,s]) = (sfy) +i (sfy) 1_2’—;_ 3;_2-

Proof. Since G1 : Hp — Dp, Gy : Dp — Dgr, G3 : Dy — Qg are
isometries, clearly their composition G = G30G40G is an isometry from
Hp to Q. With the identification z = z+iy € Hp, the isometry G can
be calculated as in (7.1). The expression of the inverse G~ = F'is (7.2).
Clearly F' : Qg+ — Hp is the isometry calculated by the composition
F= Fl o) F2 o Fg. O

To realizes a hyperbolic structure on M as a convex real projective

structure, consider the final goal of this section, which is to define an
embedding PSL(2,R) — SL(3,R).

THEOREM 7.2. The mapping ¢ : PSL(2,R) — SL(3,R) defined by
(7.3)
ad + be ac — bd ac—+ bd
(P(A) — ab — cd a?=b2—c24d?  a?24h2-c?—4d2 for A — a b
az—bz—%—c2—d2 a2+b2—%—c2+d2 C d
ab+ cd 3 :

is an embedding of PSL(2,R) into SL(3,R).

Proof. Since the mapping G : Hp — Q- is an isometry with the
inverse F, we can define a mapping ¢ : PSL(2, R) — SL(3, R) such that
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the following diagram commutes.

Hp —S— Qup

a| Lot

HP ———5—> QH/

Let [z,y,5] = [2,5] be a point in Qy» C RP? and A € PSL(2,R) the
matrix representation of an isometry f; of Hp. By Theorems 6.1, 6.2,
and 6.5,

(G o froF)lw,y,s) = (Gs o fso F)la,9,5] = (G50 f)(5)
— a?z + %z + 2a8s ot W, [w ]
=Cs <2Re(aﬂ_z) + |al?s + |5|2s> - G3(?) = [—t—’ 1] = [w,t].

To describe the matrix representation of (Go fjoF'), plug in the standard
basis [1,0,0],(0,1,0],[0,0,1] to the linear transformation (G o f; o F').
Then we obtain

(Go f10F)1,0,00 = (Go fioF)[1,0] = [a® + 8%, 2Re(af)],
(Go fioF)[0,1,0) = (Go fi 0 F)[4,0] = [@® — %, 2Re(afi)],
(Go fioF)[0,0,1] = (Go fyo F)[0,1] = [2aB, |a* + |8*].

Recall a = (249) +4(%5%) and B = (%<) + i(%52) from the proof of
Theorem 6.2. After some calculations, we have the following equations.
o? + 32 = (ad + be) + i(ab — cd),
2Re(af) = ab + cd,

2_p2_ 2y g2
2 )

o — 8% = (ac — bd) + i(a

a’ — b+ - d?
2 ?

a?+ 6> —c?—d?
2 )

2Re(afi) =

200 = (ac+ bd) + i(

a? + 0%+ 2+ d?
5 .

Thus we have the matrix representation ¢(A) as in (7.3). Suppose
(p(Al) = QD(AQ) for A, As € SL(Z,R) Then A1 = Ay or A1 = —As.
We can also compute ¢(A142) = ¢(A41)p(As2). Thus ¢ : PSL(2,R) —

e + 18] =
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SL(3,R) is an injective homomorphism. Therefore ¢ is an embedding
of PSL(2,R) into SL(3,R). O

After some the Mathematica computations, we have the following
properties.

PRroOPOSITION 7.3. Let B = ¢(A) € SL(3,R) for A € PSL(2,R).
Then,
1. Det(B) = Det(A)3 = (ad — bc)® = 1.
2. Tr(B) = Tr(A)? — 1 = (a + d)? — 1.
3. Be PSO(2,1) c SL(3,R).
4. Suppose +{a, a7} is the eigenvalues of A, respectively. Then
{a?,1,a7%} is the eigenvalues of B.

Therefore if A € PSL(2,R) is a hyperbolic element, then B = p(A) €
SL(3,R) is a positive hyperbolic element. We can derive that the hyper-
bolic structures embeds into convex real projective structures through
the identification of the conjugacy classes of [PSL(2,R)] — [SL(3,R)]

-1 0 1 0 0 a‘2 0 0
(7.4) {0‘0 J@ 0 ete? aoa® V| g 1 0
(o7 0 a_22—a2 a— ;_az 0 0 a2

8. The Goldman’s length parameters

The set of positive hyperbolic elements of SL(3,R) is denoted by
Hyp,. Goldman [5] defined the length parameters ¢,m on Hyp, as
(B) = log (%), m(B) = 3log(n), where B is a positive hyperbolic
element represented by the diagonal matrix (4.2).

In this paper we will modify Goldman’s length parameters £,m in
order to maintain the consistency with the Fenchel-Nielsen’s length pa-
rameter £. The modified Goldman’s length parameters £, m are

v

(8.1) ¢B) =108 (%), m(B) = 2 tog(n)

with Aur=1land 0 <A< pu<v.

For a hyperbolic manifold M, let Q2 be the developing image in H? and
A an element of the holonomy group I' C PSL(2,R). The translation
length £(A) of A is defined by

Y(A) = inf dp(z, A(2)),
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where dp is the Poincaré metric on 2. Then the translation length ¢(A)
of A is achieved if and only if z lies on the principal line of A which

is the line joining the repelling and attracting fixed point of A. From
Beardon’s book [1], we get the relation

tr(4) = cosh (g(—;—))

between the translation length and trace of A.
Since cosh™(t) = log(t + vt2 — 1) and |tr(A)] = a + a7 ! for a > 1,
Equation (8.2) becomes

E(A) _ 1 Ot+a_1
-1 2 2 -2
= log <a+2a —i-\/a * 4—i—a —1)

-1 |
:log(a+2a +|a 2a \)

-1 _ -l
zlog(a+a + 22 >=1og(a).

(8.2)

2 2
Therefore the Fenchel-Nielsen’s length parameter £ can be defined as
(8.3) £(A) = log(a?)

for a hyperbolic element A € PSL(2,R) represented by the diagonal
matrix (4.1) with a > 1.

THEOREM 8.1. The modified Goldman’s length parameter £ is an
isometric extension of the Fenchel-Nielsen’s length parameter £.

Proof. Let B = ¢(A). Since the length parameter ¢ is invariant under
the conjugation, consider the identifications A = o2, p =1 and v = o?
in (7.4). Then we have

¢(B) = %log (K) _ Liog ( of ) - %log(a4) _ log(a?) = £(A).

A) 2 a2
Therefore the modified Goldman’s length parameter £(B) is exactly the
same parameter to the Fenchel-Nielsen’s length parameter £(A). 0

We can extend the concept of translation length of hyperbolic struc-
tures to that of convex real projective structures. For any B € Hyp,
there exist three non-collinear fixed points and a B-invariant line in
RP?. We shall refer that the repelling, saddle, attracting fixed points
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Fix_(B),Fixo(B),Fix+(B) are the fixed points corresponding to the
eigenvectors in R3 for the smallest eigenvalue ), middle eigenvalue o,
the largest eigenvalue v, respectively. The principal line ¢(B) is the line
joining the repelling and attracting fixed points of B.

Each positive hyperbolic element B can be uniquely decomposed as
HYV up to SL(3,R)-conjugation, where

AVii 00 /g 0 0
(84) H= 0 1 0 and V = 0 pu 0
0 0 vyp 0 0 1/\/n

We call H the horizontal factor and V' the vertical factor of B € Hyp, .
H will be also called the pure hyperbolic factor of B.

Consider the horizontal factor H of B. For any point a = [z, 0, s
in the principal line ¢(B) such that x # 0,s # 0, the modified Hilbert
distance dg/ between a and H(a) is

dir(a, H(a)) = —;—log Fix_(B), a, H(a), Fix,(B)]
[ 1 } x [ AT 0
= —log 01,101, 0 1 0
2 0 8 v/ 8 1
1 (o= 39)(2-0) 1. vy
"2 e arog ~2 () -

We call £(B) = dy(a, H(a)) the horizontal translation length and it is
the length of the boundary component represented by B.

Fixo(B) = [0, 1,0]¢

Fix_(B) = [1,0,0' a=[z,0,5] H(a) Fix;(B)=1[0,0,1]"

FIGURE 4. The horizontal and vertical translation lengths
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Consider the vertical factor V' of B. Then the stationary set is the
principal line o(B) and the saddle fixed point Fixg(B). Without loss of
generality we assume p > 1. Then for any b = [z,y, s]* in the segment
joining [z, 0, s]* and [0, 1,0]%, the point V' (b) goes toward [0, 1,0] since
p > 1. Then the modified Hilbert distance dg: between b and V (b) is

1
dg (b, V(b)) = 5 log [[z,0,s]%, b, V(a), Fixo(B)]
1 ( x CL'— % 0
Z—lOg 0 3 Yy 3 yu ) 1
2 ) s Z 0
L - Vi
. . -
_lpg |z VE O
2 0"y yp' 1
1 frrr o
2 g\-()? y’ yu%’ 1

= §log (co—y 1) (y‘lﬂ 3 _0)
= %log (,u%) = zlog (1) = m(B).

We call m(B) = dy+(b,V (b)) the vertical translation length. Therefore
B = HV € SL(3,R) moves a point in Q vertically by 3 log(u) and
horizontally by %log(§ We can easily compute the following relations.

).
{(H) = %log (:\/’:_j) = %log (%) = {(B),

m(H) = glog(l) —o.

The above equations imply the horizontal translation lengths of B
and H are the same. If a positive hyperbolic element B € SL(3,R) is
derived from a hyperbolic element, then m(B) = 0. Therefore the length
parameter m measures the deviation of convex real projective structures
from hyperbolic structures.
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