초록
본 논문에서는 대학생들의 프로그래밍 과제물이나 프로그래밍 경진대회에 제출된 프로그램과 같이 동일한 기능을 요구받는 프로그램 소스 집합들에서 표절행위가 있었는지를 탐색하는 새로운 알고리즘을 제시하고 있다. 지금까지 보편적으로 사용되어 온 대표적인 알고리즘은 부분 스트링간의 완전 일치를 통한 Greedy-String-Tiling이나 두 스트링간의 지역정렬(local alignment)을 이용한 유사도 분석이 주된 방법론이었다. 본 논문에서는 해당 프로그램 소스의 집합에서 추출된 키워드들의 빈도수에 기반한 로그 확률값을 가중치로 하는 적응적(adaptive) 유사도 행렬을 만들어 이를 기반으로 주어진 프로그램의 유사구간을 탐색하는 새로운 방법을 소개한다. 우리는 10여개 이상의 프로그래밍 대회에서 제출된 실제 프로그램으로 본 방법론을 실험해 보았다. 실험결과 이 방법은 이전의 고정적 유사도 행렬(match이면 +1, mismatch이면 -1, gap이면 -2)에 의한 유사구간 탐색에 비하여 여러 장점이 있음을 알 수 있었으며, 제시한 적응적 유사도 행렬을 보다 다양한 표절탐색 목적으로 사용할 수 있음을 알 수 있었다.
This paper suggests a new algorithm for detecting the plagiarism among a set of source codes, constrained to be functionally equivalent, such are submitted for a programming assignment or for a programming contest problem. The typical algorithms largely exploited up to now are based on Greedy-String Tiling, which seeks for a perfect match of substrings, and analysis of similarity between strings based on the local alignment of the two strings. This paper introduces a new method for detecting the similar interval of the given programs based on an adaptive similarity matrix, each entry of which is the logarithm of the probabilities of the keywords based on the frequencies of them in the given set of programs. We experimented this method using a set of programs submitted for more than 10 real programming contests. According to the experimental results, we can find several advantages of this method compared to the previous one which uses fixed similarity matrix(+1 for match, -1 for mismatch, -2 for gap) and also can find that the adaptive similarity matrix can be used for detecting various plagiarism cases.