무선 애드-혹 망을 위한 위치기반 라우팅에서의 맹목적 우회경로 결정문제

Blind Detouring Problem in Geographic Routing for Wireless Ad-hoc Networks

  • 나종근 (서울대학교 컴퓨터공학과) ;
  • 김종권 (서울대학교 컴퓨터공학과)
  • 발행 : 2006.12.15

초록

최근 몇년간 무선 애드-흑 라우팅을 위한 많은 스킴들이 광범위하게 연구되었다. 위치기반 라우팅은 애드-혹 라우팅의 한 부류로써, 각 중계노드는 자신 및 목적지, 그리고 이웃노드들의 위치정보에 기반하여 독립적으로 다음-홉(next-hop) 노드를 선택한다. 이러한 위치기반 라우팅은 라우팅 상태 정보를 유지해야 하는 부담이 없기 때문에 대규모 애드-혹 망에 적합하다. 그러나, 위치기반 라우팅은 발신지와 목적지 사이에 빈공간(void)이 존재할 경우 매우 긴 우회 경로를 선택하는 문제를 안고 있다. 이 문제를 해결하기 위해, 본 논문에서는 랜드마크를 이용하는 위치기반 라우팅 방안(GLR)을 제안한다. GLR은 랜드마크(landmark)라고 불리우는 중계노드를 재귀적으로 발견하고 랜드마크 사이를 연결하는 서브패스(sub-path)를 구성한다. 다양한 망 위상에서 행해진 시뮬레이션 결과를 통해서, 제안된 방안(GLR)이 위치기반 라우팅의 성능을 크게 향상시킬 수 있음을 보인다.

Wireless ad-hoc routing has been extensively studied and many clever schemes have been proposed over the last several years. One class of ad-hoc routing is geographic routing where each intermediate node independently selects the next hop using the given location information of destination. Geographic routing, which eliminates the overhead of route request packet flooding, is scalable and suitable for large scale ad hoc networks. However, geographic routing may select the long detour paths when there are voids between a source and a destination. In this paper, we propose a novel geographic routing approach called Geographic Landmark Routing(GLR). GLR recursively discovers the intermediate nodes called landmarks and constructs sub-paths that connect the subsequent landmarks. Simulation results on various network topologies show that GLR significantly improves the performance of geographic routing.

키워드

참고문헌

  1. M. Mauve, J. Widmer, and H. Hartenstein, 'A survey on position-based routing in mobile ad hoc networks,' IEEE Network Magazine, 15(6):30--39, November 2001 https://doi.org/10.1109/65.967595
  2. P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, 'Routing with guaranteed delivery in ad hoc wireless networks,' In Proc. Of 3rd ACM Intl. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications DIAL M99, pages 48-55, 1999 https://doi.org/10.1145/313239.313282
  3. B. Karp and H. Kung, 'GPSR: Greedy Perimeter Stateless Routing for wireless networks,' in Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2000), 2000 https://doi.org/10.1145/345910.345953
  4. F. Kuhn, R. Wattenhofer, and A. Zollinger, 'Asymptotically Optimal Geometric Mobile Ad-Hoc Routing,' In Proc. 6th Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (Dial-M), pages 24-33. ACM Press, 2002 https://doi.org/10.1145/570810.570814
  5. F. Kuhn, R. Wattenhofer, and A. Zollinger, 'Worst-Case Optimal and Average-Case Efficient Geometric Mobile Ad-Hoc Routing,' In Proc. 4th Int. Symposium on Mobile Ad-Hoc Networking and Computing (Mobihoc), 2003 https://doi.org/10.1145/778415.778447
  6. Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker and Ion Stoica, 'Geographic Routing without Location Information,' MOBICOM 2003 https://doi.org/10.1145/938985.938996
  7. Ljubica Blazevic, Jean-Yves Le Boudec, and Silvia Giordano, 'A Location-Based Routing Method for Mobile Ad Hoc networks,' IEEE Transtions on Mobile Computing, Vol. 4, No. 2, March/April 2005 https://doi.org/10.1109/TMC.2005.16
  8. Qing Fang, Jie Gao, Leonidas J. Guibas, 'Locating and Bypassing Routing Holes in Sensor Networks', INFOCOM 2004
  9. J. Li, J. Jannotti, D. DeCouto, D. Karger, and R. Morris, 'A scalable location service for geographic ad-hoc routing,' in Proc. 6th Annu. ACM/IEEE International Conference on Mobile Computing and Networking (Mobicom 2000), 2000 https://doi.org/10.1145/345910.345931
  10. S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker, 'GHT: A geographic hash table for data-centric storage in sensornets,' in 1st ACM International Workshop on Wireless Sensor Networks and Applications (WSNA), 2002, pages 78-87 https://doi.org/10.1145/570738.570750
  11. ns Notes and Documentation. http://www.isi.edu/vint/nsnam/, 2000