한국 재래 닭 부화 후 고환 발달에 관한 연구

Studies on the Post-hatching Development of the Testis in Korean Native Chickens

  • Jang, B.G. (Poultry Division National livestock Research Institute) ;
  • Tae, H.J. (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Choi, C.H. (Poultry Division National livestock Research Institute) ;
  • Park, Y.J. (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Park, B.Y. (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Park, S.Y. (Bio-Safety Research Institute, Chonbuk National University) ;
  • Kang, H.S. (Bio-Safety Research Institute, Chonbuk National University) ;
  • Kim, N.S. (Bio-Safety Research Institute, Chonbuk National University) ;
  • Lee, Y.H. (School of Dentistry, Chonbuk National University) ;
  • Yang, H.H. (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University) ;
  • Ahn, D.C. (Poultry Division National livestock Research Institute) ;
  • Kim, I.S. (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonbuk National University)
  • 발행 : 2006.09.01

초록

이 연구는 한국 재래 닭에서 부화 후 고환 발달 과정을 명확하게 이해가기 위하여 부화 후 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 28, 32, 44, 52 및 64주령(n=13마리/일령)의 한국 재래닭을 이용하여 수행하였다. 한국 재래 닭의 고환은 2.5 % glutaraldehyde를 이용하여 전신 관류 고정하고 조직 처리 과정을 거쳐 Epon-araldite에 포매하였다. 초박절편기를 사용하여 $1{\mu}m$로 절편한 다음 methylene blue로 염색하여 일반적인 조직의 변화상과 형태 계측을 일반적인 방법에 따라서 정자 생성을 측정하여 다음과 같은 결과를 얻었다. 부화 후 1주령의 고환의 평균 무게는 0.015 g이었고 점진적으로 증가하여 21주령에는 3.93 g이고 21주령부터 64주령까지는 변화가 없었다. 곱슬정세관의 용적 치밀도는 1주령에 32.6%이었으나 점차적으로 증가하여 64주령에서는 92.89이었다. 1주령의 한국 재래 닭 고환 간질 조직은 고환 실질의 67.4%를 나타내었고 이러한 비율은 성장하는 동안에 점차적으로 감소하여 64주령에 7.11%를 나타내었다. 고환내 총 정자 생성은 18주령부터 28주령까지는 유의성있게 증가하였고 고환 1g당 정자 생성은 $18\sim28$주령까지는 유의성있게 증가하였고 $28\sim52$주령까지는 변화가 없었으나 64주령에 유의성 있게 감소하였다. 곱슬정세관의 평균 직경은 $1\sim21$주령까지 주령에 따라 점진적으로 증가하였고 곱슬정세관의 길이는 1주령에 0.34 m이었고 성장하면서 유의성 있게 증가하여 64주령에서는 72.2 m이었다. 곱슬정세관내 생식세포의 발달 단계는 다음과 같이 분류할 수 있다. 1) 정조세포($1\sim8$주령), 2) 정조세포, 정모세포($10\sim12$주령), 3) 정조세포, 정모세포, 원형의 정자세포($14\sim16$주령), 4) 정조세포, 정모세포, 정자세포 및 정자($18\sim64$주령). 이러한 결과를 종합하여 보면 한국 재래 닭에서 부화 후부터 성숙시기까지 고환 발달의 양상은 신생시기-성 성숙 이전기($1\sim12$주령), 성 성숙시기($14\sim18$주령) 및 성숙시기$(21\sim64)$로 나뉜다.

Changes in the chicken testis from hatching to adulthood were studied in Korean native chickens of 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 21, 24, 28, 32, 44, 52 and 64 weeks (n=13 chickens per group) of age. The present study was to investigate in more detail the post-hatching development of testis in Korean native chickens. Testes of chickens were fixed by whole body perfusion using a fixative containing 2.5% glutaraldehyde in cacodylate buffer, processed and embedded in Epon-araldite. Using $1{\mu}m$ sections stained with methylene blue-azure II, qualitative and quantitative(stereological) morphological studies were performed. Sperm production was measured by routine technique. The average volume of a testis of 1 week old Korean native chickens was determined as 0.015 g and the parameter increased linearly from 1 week to 21 weeks days (28.9 g), and did not change from 21 weeks to 64 weeks. The volume density of the seminiferous tubules increased with age from 32.6% at week 1 to 92.89% at week 64. The volume density of the interstitium represents 67.4% of the testicular parenchyma at week 1. This proportion progressively diminished during development to reach a value of 7.11% at week 64. Total sperm production per testis increased significantly from 18 weeks to 28 weeks and remained unchanged. Sperm production per 1 g testis increased significantly from 18 weeks to 28 weeks, did not change significantly from 28 weeks to 52 weeks, and declined significantly at 64 weeks of age. The average diameter of the seminiferous tubules gradually increased with age from 1 week $(42.4{\mu}m)$ to 21 weeks $(412.8{\mu}m)$. The length of the seminiferous tubules was 0.34 m at 1 week, increased significantly in subsequent age groups and reached 72.2 m by weeks 64. The stage of germ cell development in seminiferous tubules was classified as 1) spermatogonia $(1\sim8\;weeks)$, 2) spermatogonia and spermatocytes $(10\sim12\;weeks)$, 3) spermatogonia, spermatocytes and round spermatids $(14\sim16\;weeks)$, and 4) speramatogonia, spermatocytes, spermatids and spermatozoa $(18\sim64\;weeks)$. These results clarified the pattern of changes in the testicular development in Korean native chickens from hatching to adulthood as 1) neonatal-prepubertal $(1\sim12\;weeks)$, 2) puberty$(14\sim18\;weeks)$, and adult$(21\sim64\;weeks)$.

키워드

참고문헌

  1. Aire TA 1973 Development of puberty in Nigerian and White Leghorn cockerels. Poult Sci 52:1765-1769 https://doi.org/10.3382/ps.0521765
  2. Ariyaratne HBS, Chamindrani Mendis-Handagama SML 2000 Changes in the testis interstitium of Sprague Dawley rats from birth to sexual maturity. Biol Repro 62:680-690 https://doi.org/10.1095/biolreprod62.3.680
  3. Bennett CH 1967 Relation between size and age of the gonads in the fowl from hatching date to sexual maturity. Poult Sci 26:99-104
  4. Blackburn WR, Chung KW, Bullock L 1973 Testicular feminization in the mouse: Studies of Leydig cell structure and function. Biol Reprod 9:9-23 https://doi.org/10.1093/biolreprod/9.1.9
  5. Bortolussi M, Zanchetta R, Belvedere P 1990 Sertoli and Leydig cell numbers and gonadotropin receptors in rat testis from birth to puberty. Cell Tissue Res 260:185-191 https://doi.org/10.1007/BF00297504
  6. Brillard JP 1986 Age-related variations in seminiferous tubulle dimensions and germinal and Sertoli cell numbers in guinea-fowl raised under a 14L:10D hotoperiod. Poult Sci 65:369-374 https://doi.org/10.3382/ps.0650369
  7. Castro AC, Berndtson WE, Cardoso FM 2002 Plasma and testicular testosterone levels, volume density and number of Leydig cells and spermatogenic efficiency of rabbits. Braz J Med Biol Res 35:493-498
  8. Christensen AK 1975 Leydig cells. In: Handbook of physiology. Endocrinology 5:57-94
  9. Connell CJ, Christensen AK 1975 The ultrastructure of the canine testicular interstitial tissue. Biol Reprod 12:368-382 https://doi.org/10.1095/biolreprod12.3.368
  10. Ewing LL, Zirkin BC, Cochran RC 1979 Testosterone secretion by rat, rabbit, guinea pig, dog, and hamster testes perfused in vitro: correlation with Leydig cell mass. Endocrinology 105:1136-1142
  11. Ewing LL, Zirkin BR 1983 Leydig cell structure and steroidogenic function. Recent Prog Horm Res 39:599-632
  12. Fawcett DW, Neaves WB, Flores MN 1973 Comparative observations on intertubular lymphatics and the organization of the interstitial tissue of the mammalian testis. Biol Reprod 9:500-532 https://doi.org/10.1093/biolreprod/9.5.500
  13. Fouquet JP, Meu SY, Dang DC 1984 Relationships between Leydig cell morphometry and plasma testosterone during postnatal development of the monkey, Macaca fascicularis. Reprod Nutr Develop 24:281-296 https://doi.org/10.1051/rnd:19840307
  14. Franca LR, Silva VA, Chiarini-Garcia H 2000 Cell proliferation and hormonal changes during postnatal development of the testis in the pig. Biol Reprod 63:1629-1636 https://doi.org/10.1095/biolreprod63.6.1629
  15. Gondos B, Morrison KP, Renston RH 1977 Leydig cell differentiation in the prepubertal rabbit testis. Biol Reprod 17:745-748 https://doi.org/10.1095/biolreprod17.5.745
  16. Gondos B, Renston RH, Conner LA 1973 Ultrastructure of germ cells and Sertoli cells in the postnatal rabbit testis. Am J Anat 136:427-440 https://doi.org/10.1002/aja.1001360404
  17. Gottreich A, Hammel I, Yohev L 1995 Quantitative microscopic changes in the mole rat testes during an annual cycle. Anat Rec 243:195-199 https://doi.org/10.1002/ar.1092430206
  18. Ingkasuwan P, Ogasawara FX 1976 The effects of light and temperature and their interaction on the semen production of White Leghorn males. Poult Sci 45:1199-1206
  19. Kalmer GAR 1969 Developmental changes in the reproductive organs of the male Fayomi fowl. Poult Sci 38:775-781
  20. Kerr JB, Knell CM 1988 The fate of fetal Leydig cells during the development of the fatal and postnatal rat testis. Development 103:535-544
  21. Kim IS, Ariyaratne HBS, Mendis-Handagama SMLC 2002 Changes in the testis interstitium of Brown Norway rats with aging and effects of luteinizing and thyroid hormones on the aged testes in enhancing the steroidogenic potential. Biol Reprod 66:1359-1366 https://doi.org/10.1095/biolreprod66.5.1359
  22. Kim IS, Kim HY, Lee YH Kim JH 2000 Comparison of components of the testis interstitium with testosterone secretion in pigeon, pheasant, and chicken testes incubated in vitro. Korean J Lab Anim Sci 16:257-268
  23. Kim IS, Yang HH 2001 Seasonal changes of testicular weight, sperm production, serum testosterone, and in vitro testosterone release in Korean ring-necked pheasants(Phasianus colchicus karpowi). J Vet Med Sci 63:151-156 https://doi.org/10.1292/jvms.63.151
  24. Kirby JD, Mankar MV, Hardesty D, Kreider DL 1996 Effects of transient prepubertal 6-N-propyl-2-thiouracil treatment on testis development and function in the domestic fowl. Biol Reprod 55:910-916 https://doi.org/10.1095/biolreprod55.4.910
  25. Lee VWK, Cumming IA, de Kretser DM 1976 Regulation of gonadotrophin secretion in rams from birth to sexual maturity I. Plasma LH, FSH and testosterone levels. J Reprod Fertil 46:1-6 https://doi.org/10.1530/jrf.0.0460001
  26. Lee VWK, de Kretser DM, Hudson B, Wang C 1975 Variation in serum FSH, Lh and testosterone levels in male rats from birth to sexual maturity. J Reprod Fertil 42:121-126 https://doi.org/10.1530/jrf.0.0420121
  27. Mendis-Handagama SMLC, Ariyaratne HBS 2001 Changes in the testis interstitium of Sprague Dawley rats from birth to sexual maturity. Biol Reprod 65:660-671 https://doi.org/10.1095/biolreprod65.3.660
  28. Mendis-Handagama SMLC, Ewing LL 1990 Sources of error in the estimation of Leydig cell numbers in control and atrophied mammalian testes. J Microsc 59:73-82
  29. Mendis-Handagama SMLC, Risbridger GP, de Krester DM 1987 Morphometric analysis of the components of the neonatal and the adult rat testis interstitium. Int J Androl 10:525-534 https://doi.org/10.1111/j.1365-2605.1987.tb00352.x
  30. Nistal M, Paniagua R, Regadera JA 1986 Quantitative morphological study of human Leydig cells from birth to adulthood. Cell Tissue Res 246:229-236 https://doi.org/10.1007/BF00215884
  31. Parker JE, McKenzie FF, Kempster HL 1972 Development of the testis and combs of white Leghorn and New Hampshire cockerels. Poult Sci 21:35-44
  32. Prince FP 1984 Ultrastructure of immature Leydig cells in the human. Anat Rec 209:165-176 https://doi.org/10.1002/ar.1092090204
  33. Rey RA, Campo SM, Bedecarras C 1993 Histologic, morphometric and functional study of the seminiferous tubules of the Cebus monkey from birth to the end of puberty. J Clin Endocrinol Metab 76:1325-132 https://doi.org/10.1210/jc.76.5.1325
  34. Russell LD, Franca LR 1995 Building a testis. Tissue Cell 27:129-147 https://doi.org/10.1016/S0040-8166(95)80016-6
  35. Sanchez B, Pizarro M, Garcia P, Flores JM 1993 Histological study of Leydig cells in the cat from birth to sexual maturity. J Reprod Fert 47:349-353
  36. Sharp PJ, Culbert J, Wells JW 1977 Variations in stores and plasma concentrations of androgens and luteinizing hormoneduring sexual development in the cockerel. J Endocr 74:467-476 https://doi.org/10.1677/joe.0.0740467
  37. Sinha Hikim AP, Amador AG, Bartke A, Russell LD 1989 Structure/function relationship in active and inactive hamster Leydig cells : A correlative morphometric and endocrine study. Endocrinology 125:1844-1856 https://doi.org/10.1210/endo-125-4-1844
  38. Weibel ER 1969 Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235-301 https://doi.org/10.1016/S0074-7696(08)61637-X
  39. Wing TY 1982 Morphometric studies on rat seminiferous tubules. Am J Anat 165: 13-25 https://doi.org/10.1002/aja.1001650103
  40. Winter JSD, Faiman C 1972 Pituitary-gonadal relationships in male children and adolescents. Pedia Res 6:126-135 https://doi.org/10.1203/00006450-197202000-00006
  41. Zirkin BR, Ewing LL, Kromann N 1980 Testosterone secretion by rat, rabbit, guinea pig, dog, and hamster tetes perfused in vitro: Correlation with Leydig cell ultrastructure. Endocrinology 107: 1868-1874