Photovoltaic Properties of Poly[(9,9-dioctylfluorenyl-2,7-vinylene )-co-{2-(3'-dimethyldodecylsilylphenyl)-1,4-phenylenevinylene}] for Electro-Active Devices

  • Jin Sung-Ho (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Shim Jong-Min (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Jung, Seung-Jin (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Kim, Sung-Chul (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Naidu B. Vijaya Kumar (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Shin, Won-Suk (Department of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University) ;
  • Gal Yeong-Soon (Polymer Chemistry Lab., Kyungil University) ;
  • Lee, Jae-Wook (Department of Chemistry, Dong-A University) ;
  • Kim, Ji-Hyeon (Department of Chemical & Biochemical Engineering, Dongguk University) ;
  • Lee, Jin-Kook (Department of Polymer Science and Engineering, Pusan National University)
  • 발행 : 2006.10.31

초록

New, thermally robust, arylenevinylene conjugated polymers, including poly(9,9-dioctylfluorenyl-2,7-vinylene) [poly(FV)] and poly[2-(3'-dimethyldodecylsilylphenyl)-1,4-phenylenevinylene] [poly(m-SiPhPV)], were synthesized and used for the fabrication of efficient photovoltaic cells. Bulk heterojunction photovoltaic cells fabricated by blending one of the polymers, [poly(FV)], [poly(m-SiPhPV)], and poly(FV-co-m-SiPhPV), with the fullerene derivative [6,6]-phenyl-$C_{61}$-butyric acid methyl ester (PCBM) were found to have a power conversion efficiency of up to 0.038%..

키워드

참고문헌

  1. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990) https://doi.org/10.1038/347539a0
  2. J. Roger, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, H. E. Kartz, V. Kuck, K. Amundon, E. J. Jay, and P. Drziac, Proc. Natl. Acad. Sci., 98, 4835 (2001)
  3. K. Hagen, J. A. Nichols, and T. N. Jackson, IEEE T. Electron. Dev., 46, 1258 (1999) https://doi.org/10.1109/16.766895
  4. M. Halik, H. Klauk, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, Adv. Mater., 14, 1717 (2002) https://doi.org/10.1002/1521-4095(20021203)14:23<1717::AID-ADMA1717>3.0.CO;2-G
  5. Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett., 69, 4108 (1996) https://doi.org/10.1063/1.117834
  6. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001) https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  7. F. Padinger, R. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater., 13, 85 (2003) https://doi.org/10.1002/adfm.200390011
  8. B. R. Hsieh, Y. Yu, E. W. Forsythe, G. M. Schaaf, and W. A. Feld, J. Am. Chem. Soc., 120, 231 (1998) https://doi.org/10.1021/ja973553r
  9. S. H. Lee, B. B. Jang, and T. Tsutsui, Macromolecules, 35, 1356 (2002) https://doi.org/10.1021/ma010643e
  10. L. S. Roman, W. Mammo, L. A. A. Petterson, M. R. Andersson, and O. Inganas, Adv. Mater., 10, 774 (1998) https://doi.org/10.1002/(SICI)1521-4095(199807)10:10<774::AID-ADMA774>3.0.CO;2-J
  11. G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995) https://doi.org/10.1126/science.270.5243.1789
  12. S. H. Jin, S. Y. Kang, I. S. Yeom, J. Y. Kim, S. H. Park, K. H. Lee, Y. S. Gal, and H. N. Cho, Chem. Mater., 14, 5090 (2002) https://doi.org/10.1021/cm020610t
  13. S. H. Jin, H. J. Park, J. Y. Kim, K. Lee, S. P. Lee, D. K. Moon, H. J. Lee, and Y. S. Gal, Macromolecules, 35, 7532 (2002) https://doi.org/10.1021/ma020671c
  14. S. H. Jin, S. Y. Kang, M. Y. Kim, U. C. Yoon, J. Y. Kim, K. H. Lee, and Y. S. Gal, Macromolecules, 36, 3841 (2003) https://doi.org/10.1021/ma0300490
  15. J. C. Hummelen, B. W. Knight, F. LePeq, and F. Wudl, J. Org. Chem., 60, 532 (1995) https://doi.org/10.1021/jo00108a012
  16. M. Grell, W. Knoll, D. Lupo, A. Meisel, T. Miteva, D. Neher, H. G. Nothofer, U. Scherf, and A. Yasuda, Adv. Mater., 11, 671 (1997) https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<671::AID-ADMA671>3.0.CO;2-E
  17. Y. J. Pu, M. Soma, J. Kido, and H. Nishide, Chem. Mater., 13, 3817 (2001) https://doi.org/10.1021/cm010713w
  18. G. E. Jabbour, B. Kippelen, N. R. Armstrong, and N. Peyghambarian, Appl. Phys. Lett., 73, 1185 (1998) https://doi.org/10.1063/1.122367
  19. L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997) https://doi.org/10.1063/1.118344
  20. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett., 78, 841 (2001) https://doi.org/10.1063/1.1345834
  21. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005) https://doi.org/10.1002/adfm.200590000
  22. H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells, 83, 125 (2004) https://doi.org/10.1016/j.solmat.2004.02.021
  23. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Materials, 4, 864 (2005) https://doi.org/10.1038/nmat1500