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1. Introduction

Feature selection can be used to improve the simplicity
of a data mining system, as well as maintain acceptable accu-
racy for the learning algorithm to be used. It is also known
that feature selection can improve the scalability of a data
mining system as the learning process is usually faster with
fewer features. In this paper, we are interested in improving
the scalability of the feature selection process itself with re-
spect to large number of instances. Our approach is based
on an optimization-based feature selection method that uses
the nested partitions (NP) metaheuristic [8], which has been
shown to perform well when compared with other feature
selection methods [5]. The NP method uses random search
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to explore the entire space of possible feature subsets, and
is thus similar to methods such as genetic algorithms {12]
and evolutionary search [7]. However, the search strategies
themselves are quite different.

We show that using random sampling of instances can con-
siderably reduce the computational time of the NP based fea-
ture selection algorithm. Since the random sampling may add
noise to the evaluation of each feature subset, we propose
a two-stage variant of the algorithm that can be used to con-
trol this noise and is guaranteed to converge to a near-optimal
feature subset in finite time. Using sampling of instances to
improve scalability has been investigated intensely in the liter-
ature, and perhaps the most important, but yet difficult issue,
is determining the appropriate sample size to maintain an ac-
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ceptable accuracy. Some of the related research includes de-
termining the sufficient sample sizes for finding association
rules [9], progressive sampling methods [6], finding best sam-
ple sizes using a tuple relational calculus [3], and investigat-
ing the effect of class distribution on scalable learning [10].

2. NP-Based Feature
2.1 Selection

The following notation will be used:

T : Training data (instances).

m : Number of instances (m = | T|).
A 2 Set of all features.

n : Number of features (n = IA(ALL) D.
a . A specific feature (a A4y,

f . Performance measure.

f* : Optimal Performance.

The feature selection problem involves identifying a subset
A of the set A" of all n features that performs well given
the training set T of m instances. The performance is meas-
ured according to some measure f, and the objective is to
find the optimal subset 4 < A2 where f* = f(A") =
lim f(A).

Ac A(A

Feature a, Feature a, not
included included
Feature a, not
included

Feature a, not
included

Feature a,
included

<Figure 1> Partitioning tree

The nested partitions (NP) method is a general opti-
mization methodology that can be applied to any combinato-
rial optimization problems. The main idea of the method is
to use iterative partitioning of the feasible region, that then
creates a partitioning tree as shown in <Figure 1>

It uses partitioning to divide the space of all possible fea-

ture subsets into regions that can be analyzed individually
and then aggregates the results from each region to determine
how to continue the search, that is, how to concentrate the
computational effort. In other words, the NP method adap-
tively takes random samples of feature subsets from the en-
tire space of possible feature subsets and concentrates the
sampling effort by systematic partitioning of this space. A
key component in formulating the feature selection problem
is selecting a performance measure. Depending on how this
is done, feature selection methods may be divided into two
categories: wrappers and filters. Wrappers use the accuracy
of the resulting classification. Thus, to evaluate a subset of
features, a predictive model is induced based on these
features. This is an expensive evaluation and only applies
for supervised learning. Filters, on the other hand, select fea-
tures before any other learning algorithm is applied. A differ-
ent performance measure must therefore be specified. When
choosing a wrapper or filter, the general consideration is that
wrappers will give better performance when used with a su-
pervised learning method, whereas filters are usually much
faster. The NP optimization method can be implemented as
either a wrapper or filter [S]. Here, we focus on a filter em-
ploying the following correlation based measure [2] :

kps
\/k-f_k(k_l);aa ’

fcorrclatiou (A ) =

where & is the number of features in the set 4, Poa is the
average correlation between the features in this set and the
classification feature, and p,, is the average correlation be-

tween features in the set 4.

The NP method searches through the space of feature sub-
sets by evaluating the entire subsets. On the other hand, it
also incorporates methods that evaluate individual features
into the partitioning to impose a structure that speeds the
search. When it is done in such a way that good solution
as clustered together in the same subsets, then those subsets
are selected by the algorithm with relatively little effort. We
now discuss an intelligent partitioning strategy when solving
feature selection problems. Thus given a current set A(k)
of potential feature subsets, partition the set into two disjoint

subsets
Al(k)=~A€A(k):a€A‘ ............................................ (2)
Ag(k):‘AEA(k)Z(LEA' ............................................. (3)

The surrounding region is simply A43(k) = A\4(k). Each
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of these three regions is then sampled as discussed above
and based on these samples the next most promising region
is selected. In theory, the features can be selected in an arbi-
trary order, but an intelligent partitioning where features are
ordered according to their information gain performs sig-
nificantly better, and this partitioning is used in all of the
numerical experiments below.

This partitioning creates a tree of subsets that we refer
to as the partitioning tree. The distance of the current promis-
ing region from the top of the tree, which corresponds to
the minimum number of iterations it takes to get to this re-
gion, we refer to as the depth of the region. Once a maximum
depth region is reached, that is a region that will not be
partitioned further, the algorithm terminates. In the context
of feature selection problem, this maximum depth will be
equal to the number of features that are considered for either
inclusion or exclusion from the selected set.

The key to the convergence of the NP method is the proba-
bility by which a region is selected correctly in each iteration.
A sufficient condition for asymptotic convergence is that this
probability of correct selection is bigger than one half, and
to guarantee that a minimum probability is obtained,
Olafsson [4] proposed using a two-stage sampling procedure
that determines how much random sampling effort N(&,6)is
needed from each region to guarantee correct selection with
probability ¥ within an indifference zone 6 > 0. If this sam-
pling effort is used, the probability of having found suffi-
ciently good solution the first time maximum depth is
reached, that is, when the search space has been reduced
to a single feature subset, is boundasd as follows:

Pr{|f(A (k))—f*lﬁé}ZW, ........................................... (4)
where
S
TR ®

Here ¥ is the user selected minimum probability by which
a correct selection is made in each iteration, and n is as
before the total number of features.

We call the NP method applied to feature selection using
the filter evaluation the NP-Filter, and if it also uses the
two-stage sampling approach the Two-Stage NP-Filter
(TSNP-Filter). A pseudo-code for the TSNP-Filter is shown
in Appendix A, and used the following notation. We let N;
denote the number of sample sets in Ayk), j = 1, 2, 3., j-th
subregion in the k-th iteration and Xy = f(A!), where A

and f(- ) are defined as the sample performance of i-th

set in the j-th region. The two-stage ranking-and-selection
procedure takes no samples in the first stage, and then de-
termines the total number N; samples required from the j-th
region using based on the sample variance of the perform-
ance estimates.

3. Instance Sampling in the NP-Filter

In this section, we consider improving the scalability of
the feature selection method in terms of its ability to handle
increasing number of instances. The NP method was origi-
nally conceived for simulation-based optimization and is
therefore naturally consistent with using performance esti-
mates that are noisy due to sampling. Indeed, in the
NP-Filter, a new set A(k) of instances is sampled in each
iteration in such a way that this set is independent of the
previous sets: A(0), A(1), -+-, A(k - 1). Thus, if the new in-
stances indicate an erroneous decision has been made,the
backtracking feature of the NP method enables the algorithm
to make corrections, thus correcting the potential bias. The
question still remains as of how large of a portion of the
database is needed by the NP method. In particular, as the
proportion is decreased and more backtracking is required.
Then at some point the computational inefficiencies of back-
tracking will outweigh the savings obtained by using fewer
instances. To evaluate these questions empirically, we apply
the NP-Filter. We used four small data sets from the UCI
repository of machine learning databases[1]. The character-
istics of these data sets are shown in <Table 1>. As the
NP-Filter is randomized algorithms, we run five replications
for each experiment and report the average.

<Table 1> Characteristics of the tested data

Data Set Instances Features
lymph 148 18
vote 435 16
audiology 226 69
cancer 286 9
kr-vs-kp 3196 36

<Figure 2> illustrates the computation time needed by the
NP-Filter for different sampling rates used. We note from
the graph of that figure that at first the computation time
decreases, but if the sampling rate becomes less than approx-
imately 10% of the instances, the computational time actually
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increases.
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<Figure 2> Computational time for instance
sampling rates {(data set ‘vote’)
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<Figure 3> Number of backtrackings on instance
sampling rates (data set ‘vote’).

The intuitive explanation of this is shown in the right hand
graph. It is clear that number of backtrackings abruptly in-
creases when less than 10% of the instances are used. This
means that even though each iteration may take less compu-
tation time, the number of iterations until maximum depth
is reached increases dramatically, hence increasing the over-
all computation time. There is therefore some optimal sample
rate R, where the NP-Filter would perform best.

To find this optimal rate, we must consider the cause of
backtracking. The NP-Filter backtracks when it discovers
that the surrounding region is actually more promising than
the current most promising region. It thus corrects mistakes
made due to noisy performance estimates by backtracking
when the error is discovered, so we would expect to see
more backtracking when fewer instances are used. In partic-
ular, when too few instances are used, the noise is excessive
and backtracking must hence increase dramatically to com-
pensate for the noise.

In order to get a better feel for how the noise in the per-
formance increases as a function of decreasing sample rate,

we consider the data sets in <Table 1>. To calculate the
true amount of noise, we must calculate the sample variance
given all the feature subsets in a particular region, for all
possible levels of the tree. Since the total number of
non-empty feature subsets is 2"-1, where n is the number
of features, this quickly becomes infeasible, so instead of
working with the datasets directly, we work with subsets of
the dataset, each containing 7 randomly selected features.
Even for such small datasets, 127 feature subsets must be
evaluated for each experiment. The results are shown in
<Table 2>

{Table 2> Performance variances for sampling rates of

instances
SamPle  1100%| 80% | 60% | 40% | 20% [ 10% | 5% | 2%
votel 00 [ 14 | 40 | 50| 81 [173 | 275 |N/A
vote2 00 166 | 9.1 |164 280 [383 | 419 | N/A
audiologyl 00 | 15| 42 | 61 |169 [334 | 488 | 943
audiology2 | 00 | 1.2 | 1.9 | 53 [149 |256 | 587 |91.1
audiology3 00 |09 |24 | 49 (108 287 | 582 |185.4
cancerl 0.0 | 07 | 2.1 43 1192 149.1 [109.7 | N/A
cancer2 00 | 05 | 1.8 45 | 147 | 52.7 [ 1047 | N/A
cancer3 00 | 06 | 1.4 | 3.0 {139 {534 [150.8 | N/A
kr-vs-kpl 00 | 02|04 | 09| 28| 59| 89149
kr-vs-kp2 00 | 01 |01 | 02} 05] 12 271 63
ke-vs-kp3 00 | 01|01 ]| 02]05]|12] 27/95

From <Table 2> it is clear that the performance variance
increases rapidly as the instance sampling rate decreases.
Indeed, all of the test datasets exhibit exponential pattern.
We also note that although all of the datasets illustrate ex-
ponential growth, the rate is different for each dataset. We
infer that the sample variance increases exponentially as the
sample rate decreases, but that the rate of increase the ex-
ponential increase is application dependent and must be esti-
mated from the data.

4. Determining the Sampling Rate for
the TSNP-Filter

As for other methods that employ instance sampling to
improve performance, finding the optimal sampling rate R
is the biggest challenge when using the NP-Filter. As seen
in Section 3, this sampling rate is related to the backtracking,
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which is in turn related to the variance of the performance.
Intuitively, decreasing the sampling rate will always decrease
the computation time for each iteration, but very small sam-
ples may cause a large variance of performances and cause
excessive backtracking. This will in turn increase the number
of iteration and the overall computation time.

The trade-off is therefore between the computation time
within each iteration,} and the number of iterations needed
until convergence is achieved. In the TSNP-Filter, the ex-
pected computation time within an iteration is a function of
the performance variance, and the expected number of iter-
ations is a function of the probability of selecting the correct
region. Thus, analytical expression can be obtained for both
these quantities, and the optimal trade-off achieved.

4.1 Formulation

In this section, we formulate the trade-off between mini-
mizing the computation time within an iteration and minimiz-
ing the number of iterations for the TSNP-Filter as an opti-
mization problem and find the optimal instance sampling rate
R by solving this problem. We use the following notation.
The total computation time is T= T; + T, + -+ + Tk, where
T; is the computation time in the jth iteration and K is the
total number of iterations. As before N = N;(k) denotes
the number of sample feature sets at each iteration k, and
I is the number of sample instances. The sampling rate is
therefore given by R = I / m.

We are interested in minimizing the expected time of iter-
ation k that can be affected by the performance variability
and sampling rate of instance. We may therefore find a sol-
ution using the trade-off between E{N.| K] and E[7,|N).
Since from the previous section it is known that the varia-
bility can be represented as the number of instances and
E{N,| K] would increase as the number of instances de-
creases while E{7;| N,] would decrease. Therefore, we for-

mulate the trade-off as the following optimization problem.
Min AETM|k]+(1_A)E1EcIM] ........................... (6)

It is clear that as functions of the sampling rate R,
EIN,| K] is decreasing and E{7;| N,/ is increasing. Further-
more, their scale can be different, so we weight them together
using an weight A that should be determined by the
experimenter, We know that E{/V,| K] can be written in terms

of the expected performance variance. However, the ex-

pected performance variance depends both on the applica-
tion and the manner in which partitioning is done, so an
analytical form cannot be obtain. The same is true for
E[T] N], but our empirical results strongly indicate certain
patterns for these expected values, and we state those as
assumptions.

Assumption 1. The expected calculation time of each feature
sample is directly proportional to the number of instances.
Assumption 2. The relationship between performance var-
iance and instance sampling rate is exponentially distributed.
ES*(k)=ce™ % forc; > 0, ¢, > 0.

As noted before, these is no theoretical justification for
Assumptions 1-2, but they are both intuitively appealing and
supported by our empirical results. Now, given those as-
sumption, the optiinal instances sampling rate is found in
the following key theorem.

Theorem 1. Let Assumptions 1-2 hold. By using uniform
sampling rateof instances and selecting the initial number
of sample feature subsets sufficiently small so that it is small-
er than then required number of samples, the optimal instance
sampling rate is given by

S S € VR R A
B = o ln[ NI ] 0

Proof. By Assumption 1, the expected computation time in
each iteration, given the number of samples is directly pro-
portional to the number of instances, that is,

E[];C|M}=CO'E[1]=CO'I ............................................. (8)

From the fact that if the number of instance samples de-
creases, the performance variability of feature sample sets
increases exponentially as stated in the previous section. The
expected number of feature sample sets in each iteration can
be stated as follows:

E[N, K] = .h_zE[S?(k)] ....................................................... 9

&

Based on the (6) and the assumptions, the restated problem
is as follows.

2
lim /\~h—-cle‘62'ﬁ'+(1—)\)-c0-m-R
R ¥
subject to 0 <A <1
O<R=<1,
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This problem can be solved by taking the derivative of
the objective function and identifying the minimum point that

satisfies the constraints. In particular, since

& Cost _ A . h?

e £>0
dR? &

v

any solution to

0=-2L )\-ﬁz— s T (1-A)-¢q-m- R
dR &
2
=~Rc/\-7;2- cqe B (1=X) g m

is a minimum. It follows that R is given by equation (7).

The value of A can be chosen by an experimenter accord-
ing to the preference. The indifference zone, & and selection
probability, P’ that determines the value of h should be also
determined by the experimenter. If 4 is small and P is large,
the sampling rate would be large and vice versa.

4.2 Numerical Results

The NP method guarantees a correct selection with proba-
bility ¥, within an indifference zone § > 0. However, since
the TSNP-Filter incorporates a heuristic approach, the robust-
ness of this must be evaluated empirically. The constants
co, €1, and ¢, are calculated empirically for each of the data-

ference zone §. For the other parameters, we set A = 0.5,
& = 1 and 5 percentage points, and ¥ = 0.75, 0.85 and 0.95.
The results are reported in <Table 3>.

From <Table 3>, we note that as expected the sample rate
is smaller for 6§ = 5 than &6 = 1, and smaller when ¥ is
smaller. Thus, by adjusting the instance sampling rate appro-
priately, the quality of the solutions found by the TSNP-Filter
remains constant. This is supported by the results in <Table
3>, which shows that for each problem there is no significant
difference in the accuracy obtained. The percentage of time
that this accuracy is within the indifference zone is reported
in <Table 4>. We note that for indifference zone of 6§ =
5, the estimated probability of being within the indifference
zone is actually significantly higher that the minimum proba-
bility ¥ of correct selection. The intuitive explanation for
this is that when the indifference zone is selected this large
then it is relatively easy to find feature subsets with accuracy
within the indifference zone, and hence this will happen most
of the time, even if ¥ = 0.75 is selected. When the indif-
ference zone is smaller, § = 5, then the estimated proba-
bilities closely follow the prescribed minimum ¥, but except
for the ‘vote’ dataset, the minimum is not met exactly.

{Table 4> Probabilities that a solution is within the
indifference zone

sets in <Table 1>, and R’ calculated according to equation Dataset 5 v
(7). To evaluate if the TSNP-Filter solution is within the 0.75 0.85 0.95
indifference zone, the true optimum must be known. Since vote f 332 gzz 322
this is computationally intractable except for small datasets, 5 0.98 0.98 1'00
we again use modified data sets that now contain 8 randomly audiology 1 072 083 0.9
selected features in addition to the class feature. First we 5 0.83 0.88 0.97
. . . . cancer
find the optimal solution for each dataset using an enumera- 1 0.65 0.72 0.81
tive approach and then calculate how many solutions of the Kr-vs-kp 5 0.90 0.94 0.95
TSNP -Filter out of 100 replications are within the indif- ! 0.63 074 087
<Table 3> Accuracy of the TSNP-Filter on the reduced datasets
'Z
Dataset é 0.75 0.85 0.95
Sampling Rate (%) | Accuracy | Sampling Rate (%) | Accuracy | Sampling Rate (%) | Accuracy
. 5 16 95.57+0.27 21 95.57+0.26 23 95.58+0.25
€
v 1 2 95.59+0.25 37 95.580.26 39 95.610.11
. 5 27 42.62+0.03 30 43.61+0.02 35 43.63+0.01
audiology
1 44 43.63+0.02 47 43.63+0.02 51 43.64+0.02
e 5 24 70.32+0.24 28 70.3440.11 31 70.35£0.06
cancet 1 40 70.35+0.17 45 70.3420.09 47 70.360.03
I vs-k 5 8 65.55+0.48 13 65.57+0.32 15 65.55+0.41
VP 1 25 65.5120.21 29 65.59+0.15 32 65.6120.07
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<Table 5> Comparison of three different scalability methods

Dataset Approach Sample Rate Accuragcy Speed Backtracks
TSNP-Filter 16 93.2+1.3 7864113 0.2+0.4
vote NP-Filter w/sampling 10 92.4+1.0 816167 1.6+2.2
NP-Filter 100 93.5+0.4 2820£93 0.0£0.0
TSNP-Fiiter 27 70.2+1.6 27722+6804 128.8+24.8
audiology NP-Filter w/sampling 10 69.2+2.4 35839+14563 371.0£182.0
NP-Filter 100 69.7£1.9 411053255 0.0£0.0
TSNP-Filter 24 73.5+0.5 418+10 2.442.8
cancer NP-Filter w/sampling 10 72.6£1.2 486+89 7.4+3.4
NP-Filter 100 73.2+0.6 795483 0.0£0.0
TSNP-Filter 3 89.0+0.4 5189+492 0.0£0.0
kr-vs-kp NP-Filter w/sampliag 5 89.0+1.2 7246+809 1.8£3.0
NP-Filter 100 87.945.7 107467+8287 1.8£3.0

The results reported above prov:de some insights into
how the TSNP-Filter works. However, we are primarily in-
terested in how the new two stage sampling approach im-
proves the performance of the original NP-Filter. We thus
make a three-fold comparison between the TSNP-Filter, the
original NP-Filter, and the NP-Filter with a constant sam-
pling rate found by experiments with sampling rates of R
= {100,80,60,40,20,10,5,2} and selecting the best rate. The
results are reported in <Table 5>. A more interesting result
is that the TSNP-Filter even performs better than the
NP-Filter with sampling where the sampling rate is de-
termined experimentally as the best sample rate. The in-
tuitive reason for this is that this approach uses the same
sample rate in every iteration without consideration of the
size of the regions begin compared in that iteration. This
means that it tends to over sampling in certain situations
when the decision is relatively easy. The TSNP-Filter, on
the other hand, automatically determines the best sampling
rate and does this very effectively.

5. Conclusion

We showed that by using random sampling of instances,
the speed of the NP-based feature selection method can be
improved significantly. The key issue in using sampling is
to determine the sample size. For the NP-based approach,
using very small portion of a sample rate causes too much
noise in the performance evaluation that causes the algo-
rithm to make incorrect moves that must be corrected

through backtracking. Hence, the number of iterations in-
creases and the overall computation time does as well. The
optimal sampling rate will depend on both the size and
structure of the particular dataset, so it cannot be easily
determined a priori. However, we proposed a two-stage
sampling approach that determines the necessary sampling
effort based on the estimated variance. The numerical re-
sults reported show that sampling works well in general,
and that the two-stage approach finds very good sample
rates in an automated manner.
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Appendix. TSNP-Filter

PSEUDO-Code

Given K > 1, ng, dsop(n), 8, ¥ and an order ap, apy, ...,

am of features

Initialize A(0) < A, k < 0, A* = {} and f* = o

Loop

Aik) < (A €AK) : auqy  A),

Ayk) < {A €Ak) : aqy & A},
As(k) < A\ A(k),

For every set Aj(k)
Agest(k)‘_; fﬁest(k)(_oo; i1
Obtain ng sample sets
Calculate the first-stage sample means
and variance

— 1 Lo
XY (k) 3 X(0)

S}Z(k)<— iy [xl](k) —_ XJ('I)(]C)]E

TLQ_].

, for j=1,2,3

Compute the total sample size
2 g2
Ni(k)—max {ng + 1|-h—5%ﬁ-|}

where 0 is the indifference zone and 4 is a constant
that is determined by ny and the minimum selection
probability P of correct selection.

Loop

Aj; (k) < Randomly select a feature
subset
it fi (k) < foes(k) then
Fhen (k)= £ (k), Alowe(k)—Aj (k)

P—i+1
Until enough feature subset samples given ¢ and ¥
j* < arg min ; L (k)
if /=3 then A(k+1) < A(k-1)
else Ak+ 1) « Ap(k)
k<—k+1

End
Until d(A(k)) = dop(n)



