Aluminizing of Incoroy 909 Alloy by Pack Cementation Method

팩 세멘테이션법에 의한 Incoloy 909 합금의 알루미나이징

  • Ahn, Jin-Sung (Sermatech Korea) ;
  • Kwon, Soon-Woo (School of Nano and Advanced Materials, Changwon National University) ;
  • Yoon, Jae-Hong (School of Nano and Advanced Materials, Changwon National University) ;
  • Park, Bong-Gyu (School of Nano and Advanced Materials, Changwon National University)
  • Published : 2006.08.30

Abstract

Incoloy alloy 909 is an Fe-Ni-Co based superalloy that is attractive for gas turbine engine applications. The absence of chromium, however, makes the alloy more susceptible to oxidation in high temperature. To improve the oxidation resistance aluminizing was performed by high activity low temperature pack cementation process. Aluminizing condition was examined with different times and temperatures. Optimum aluminizing conditions were at the temperature of $552^{\circ}C$ for 20 hrs. In the optimized condition, the thickness of the aluminized layer was about $20{\mu}m$. Also, the aluminized layer made the alloy to increase the resistance to the corrosion.

Keywords

References

  1. D. F. Smith, J. S. Smith, S. Floreen, Superalloy 1984, The Metallurgical Society of AIME, Warrandale, PA (1984) 591
  2. R. W. Hayes, D. F. Smith, E. A. Wanner, J. C. Earthman, Mat. Sci. & Eng., A (1993) 43
  3. R. W. Hayes, D. F. Smith, E. A. Wanner, J. C. Earthman, Mater. Sci. Eng., A (1993) 43
  4. Z. D. Xiang, P. K. Datta, Mater. Sci. Eng., A356 (2003) 136 https://doi.org/10.1016/S0921-5093(03)00107-2
  5. Z. D. Xiang, P. K. Datta, Mater. Sci. Eng., A356 (2003) 185
  6. Z. D. Xiang, S. Rose, P. K. Datta, Surf Coat. Tech., 161 (2002) 286 https://doi.org/10.1016/S0257-8972(02)00469-3
  7. C. Houngninou, S. Chevalier, J. P. Larpin, Appl. Surf. Sci., 236 (2004) 256 https://doi.org/10.1016/j.apsusc.2004.04.026
  8. L. Levin, A. Ginzburg, L. Klinger, T. Werber, A. Katsman, P. Schaaf, Surf. Coat. Tech., 106 (1998)
  9. K. C. Russell, J. W. Edington, J. Met. Sci., 6 (1972) 20 https://doi.org/10.1179/030634572790445821
  10. Z. Chen, Scripta, 26 (1992) 1077 https://doi.org/10.1016/0956-716X(92)90233-5
  11. D. K. Das, V. Singh, S. V. Joshi, Metall. Mat. Trans., 29A (1998) 2173
  12. K. A. Heck, D. F. Smith, J. S. Smith, D. A. Wells, M. A. Holderby, Superalloy 1988 (edited by S. Reichman, D. N. Duhl, G. Maurer, S. Antolovich and C.Lund), The Metallurgical Society (1988) 151
  13. A. Chien, D. Gan, P. Shen, Mat. Sci. & Eng., A206, (1996) 215 https://doi.org/10.1016/0921-5093(95)09899-2
  14. H. L. Huang, Y. Z. Chen, D. Gan, Mat. Sci. & Eng., A328 (2002) 238 https://doi.org/10.1016/S0921-5093(01)01699-9
  15. J. Benoist, K. F. Badawi, A. Malie, C. Ramade, Surf. & Coat. Tech., 194 (2005) 48 https://doi.org/10.1016/j.surfcoat.2004.04.094
  16. Progress Report, European Network Surface Engineering of New Alloys for Super High Efficiency Power Generation, Project no HPRN-CT-2001-00201
  17. T. Izumi, T. Nishimoto, T. Narita, Intermetallics, 11 (2003) 841 https://doi.org/10.1016/S0966-9795(03)00083-9
  18. K. Stein-Fechner, J. Konys, O. Wedemeyer, J. Nucl. Mat., 249 (1997) 33 https://doi.org/10.1016/S0022-3115(97)00208-0
  19. G. Nenamati, P. Buttol, A. Casagrande, C. Fazio, J. Nucl. Mat., 230 (1996) 214 https://doi.org/10.1016/0022-3115(96)80016-X