Development of a Food-Grade Integration Vector for Heterologous Gene Expression and Protein Secretion in Lactococcus lactis

  • Jeong, Do-Won (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Kim, Kyoung-Heon (Division of Food Science, College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2006.11.30

Abstract

A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.

Keywords

References

  1. Alvarez, M. A., M. Herrero, and J. E. Suárez. 1998. The site-specific recombination system of the Lactobacillus species bacteriophage A2 integrates in Gram-positive and Gram-negative bacteria. Virology 250: 185-193 https://doi.org/10.1006/viro.1998.9353
  2. Atlung, T., A. Nielsen, L. J. Rasmussen, L. J. Nellemann, and F. Holm. 1991. A versatile method for integration of genes and gene fusions into the ${\lambda}$ attachment site of Escherichia coli. Gene 107: 11-17 https://doi.org/10.1016/0378-1119(91)90291-I
  3. Bermudez-Humaran, L. G., P. Langella, J. Commissaire, S. Gilbert, Y. Le Loir, R. L'Haridon, and G. Corthier. 2003 Controlled intra- or extracellular production of staphylococcal nuclease and ovine omega interferon in Lactococcus lactis. FEMS Microbiol. Lett. 224: 307-313 https://doi.org/10.1016/S0378-1097(03)00475-0
  4. Brondsted, L. and K. Hammer. 1999. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1 to obtain chromosomal single-copy transcriptional fusions in Lactococcus lactis. Appl. Environ. Microbiol. 65: 752-758
  5. Choi, H.-J., M.-J. Seo, J.-C. Lee, C.-I. Cheigh, H. Park, C. Ahn, and Y.-R. Pyun. 2005. Heterologous expression of human ${\beta}$-defensin-1 in bacteriocin-producing Lactococcus lactis. J. Microbiol. Biotechnol. 15: 330-336
  6. Chopin, M.-C., A. Chopin, A. Rouault, and N. Galleron. 1989. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 55: 1769-1774
  7. De Ruyter, P. G. G. A., O. P. Kuipers, and W. M. de Vos. 1996. Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl. Environ. Microbiol. 62: 3662-3667
  8. De Vos, W. M. and J. Hugenholtz. 2004. Engineering metabolic highways in lactococci and other lactic acid bacteria. Trends Biotechnol. 22: 72-79 https://doi.org/10.1016/j.tibtech.2003.11.011
  9. Froseth, B. R. and L. L. McKay. 1991. Development and application of pFM011 as a possible food-grade cloning vector. J. Dairy Sci. 74: 1445-1453 https://doi.org/10.3168/jds.S0022-0302(91)78302-1
  10. Fu, J.-F., R.-Y. Chang, and Y.-H. Tseng. 1992. Construction of stable lactose-utilizing Xanthomonas campestris by chromosomal integration of cloned lac genes using filamentous ${\varphi}Lf$ DNA. Appl. Microbiol. Biotechnol. 37: 225-229
  11. Hanahan, D. and M. Meselson. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 134: 318-329
  12. Henrich, B., J. R. Klein, B. Weber, C. Delorme, P. Renault, and U. Wegmann. 2002. Food-grade delivery system for controlled gene expression in Lactococcus lactis. Appl. Environ. Microbiol. 68: 5429-5436 https://doi.org/10.1128/AEM.68.11.5429-5436.2002
  13. Hermesz, E., F. Olasz, L. Dorgai, and L. Orosz. 1992. Stable incorporation of genetic material into the chromosome of Rhizobium meliloti 41: Construction of an integrative vector system. Gene 119: 9-15 https://doi.org/10.1016/0378-1119(92)90061-S
  14. Holo, H. and I. F. Nes. 1989. High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl. Environ. Microbiol. 55: 3119-3123
  15. Jeong, D.-W., Y. C. Choi, J. M. Lee, J. M. Seo, J. H. Kim, J.-H. Lee, K. H. Kim, and H. J. Lee. 2004. Screening and characterization of secretion signals from Lactococcus lactis ssp. cremoris LM0230. J. Microbiol. Biotechnol. 14: 1052-1056
  16. Jeong, D.-W., J.-H. Lee, K. H. Kim, and H. J. Lee. 2006. A food-grade expression/secretion vector for Lactococcus lactis that uses an ${\alpha}$-galactosidase gene as a selection marker. Food Microbiol. 23: 468-475 https://doi.org/10.1016/j.fm.2005.06.003
  17. Kim, J. Y., S. Lee, D.-W. Jeong, S. Hachimura, S. Kaminogawa, and H. J. Lee. 2006. In vivo immunopotentiating effects of cellular components from Lactococcus lactis ssp. lactis. J. Microbiol. Biotechnol. 16: 786-790
  18. Kuipers, O. P., M. M. Beerthuyzen, R. J. Siezen, and W. M. de Vos. 1993. Characterization of the nisin gene cluster nisABTCIPR of Lactococcus lactis. Requirement of expression of the nisA and nisI genes for development of immunity. Eur. J. Biochem. 216: 281-291 https://doi.org/10.1111/j.1432-1033.1993.tb18143.x
  19. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27299-27304 https://doi.org/10.1074/jbc.270.45.27299
  20. Kuipers, O. P., P. G. G. A. de Ruyter, M. Kleerebezem, and W. M. de Vos. 1997. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 15: 135-140 https://doi.org/10.1016/S0167-7799(97)01029-9
  21. Law, J., G. Buist, A. Haandrikman, J. Kok, G. Venema, and K. Leenhouts. 1995. A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J. Bacteriol. 177: 7011-7018 https://doi.org/10.1128/jb.177.24.7011-7018.1995
  22. Leenhouts, K. J., J. Kok, and G. Venema. 1989. Campbell-like integration of heterologous plasmid DNA into the chromosome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 394-400
  23. Leenhouts, K. J., B. Tolner, S. Bron, J. Kok, G. Venema, and J. F. M. L. Seegers. 1991. Nucleotide sequence and characterization of the broad-host-range lactococcal plasmid pWV01. Plasmid 26: 55-66 https://doi.org/10.1016/0147-619X(91)90036-V
  24. Leenhouts, K., A. Bolhuis, G. Venema, and J. Kok. 1998. Construction of a food-grade multiple-copy integration system for Lactococcus lactis. Appl. Microbiol. Biotechnol. 49: 417-423 https://doi.org/10.1007/s002530051192
  25. Le Loir, Y., S. Nouaille, J. Commissaire, L. Bretigny, A. Gruss, and P. Langella. 2001. Signal peptide and propeptide optimization for heterologous protein secretion in Lactococcus lactis. Appl. Environ. Microbiol. 67: 4119-4127 https://doi.org/10.1128/AEM.67.9.4119-4127.2001
  26. Lennox, E. S. 1955. Transduction of linked genetic characters of the host by bacteriophage P1. Virology 1: 190-206 https://doi.org/10.1016/0042-6822(55)90016-7
  27. Lillehaug, D., I. F. Nes, and N.-K. Birkeland. 1997. A highly efficient and stable system for site-specific integration of genes and plasmids into the phage ${\varphi}LC3$ attachment site (attB) of the Lactococcus lactis chromosome. Gene 188: 129-136 https://doi.org/10.1016/S0378-1119(96)00798-6
  28. London, J. 1990. Uncommon pathways of metabolism among lactic acid bacteria. FEMS Microbiol. Rev. 7: 103-112 https://doi.org/10.1111/j.1574-6941.1990.tb01677.x
  29. Maguin, E., P. Duwat, T. Hege, D. Ehrlich, and A. Gruss. 1992. New thermosensitive plasmid for Gram-positive bacteria. J. Bacteriol. 174: 5633-5638 https://doi.org/10.1128/jb.174.17.5633-5638.1992
  30. Makrides, S. C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol. Rev. 60: 512-538
  31. Martin, M. C., J. C. Alonso, J. E. Suarez, and M. A. Alvarez. 2000. Generation of food-grade recombinant lactic acid bacterium strains by site-specific recombination. Appl. Environ. Microbiol. 66: 2599-2604 https://doi.org/10.1128/AEM.66.6.2599-2604.2000
  32. McKay, L. L. 1983. Functional properties of plasmids in lactic streptococci. Antonie Van Leeuwenhoek 49: 259-274 https://doi.org/10.1007/BF00399502
  33. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 https://doi.org/10.1021/ac60147a030
  34. Perez-Martinez, G., J. Kok, G. Venema, J. M. van Dijl, H. Smith, and S. Bron. 1992. Protein export elements from Lactococcus lactis. Mol. Gen. Genet. 234: 401-411 https://doi.org/10.1007/BF00538699
  35. Ravn, P., J. Arnau, S. M. Madsen, A. Vrang, and H. Israelsen. 2003. Optimization of signal peptide SP310 for heterologous protein production in Lactococcus lactis. Microbiology 149: 2193-2201 https://doi.org/10.1099/mic.0.26299-0
  36. Ribeiro, L. A., V. Azevedo, Y. Le Loir, S. C. Oliveira, Y. Dieye, J.-C. Piard, A. Gruss, and P. Langella. 2002. Production and targeting of the Brucella abortus antigen L7/L12 in Lactococcus lactis: A first step towards food-grade live vaccines against brucellosis. Appl. Environ. Microbiol. 68: 910-916 https://doi.org/10.1128/AEM.68.2.910-916.2002
  37. Romero, D. A. and T. R. Klaenhammer. 1992. IS946-mediated integration of heterologous DNA into the genome of Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 58: 699-702
  38. Simoes-Barbosa, A., H. Abreu, A. Silva Neto, A. Gruss, and P. Langella. 2004. A food-grade delivery system for Lactococcus lactis and evaluation of inducible gene expression. Appl. Microbiol. Biotechnol. 65: 61-67
  39. Van Asseldonk, M., G. Rutten, M. Oteman, R. J. Siezen, W. M. de Vos, and G. Simons. 1990. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95: 155-160 https://doi.org/10.1016/0378-1119(90)90428-T