Isolation of a Pseudomonas sp. Capable of Utilizing 4-Nonylphenol in the Presence of Phenol

  • Chakraborty Joydeep (Department of Microbiology, Bose Institute, P-1/12 C.I.T Scheme VII M, Kolkata) ;
  • Dutta Tapan K. (Department of Microbiology, Bose Institute, P-1/12 C.I.T Scheme VII M, Kolkata)
  • Published : 2006.11.30

Abstract

Enrichment techniques led to the isolation of a Pseudomonas sp. strain P2 from municipal waste-contaminated soil sample, which could utilize different isomers of a commercial mixture of 4-nonylphenol when grown in the presence of phenol. The isolate was identified as Pseudomonas sp., based on the morphological, nutritional, and biochemical characteristics and 16S rDNA sequence analysis. The ${\beta}$-ketoadipate pathway was found to be involved in the degradation of phenol by Pseudomonas sp. strain P2. Gas chromatography-mass spectrometric analysis of the culture media indicated degradation of various major isomers of 4-nonylphenol in the range of 29-50%. However, the selected ion monitoring mode of analysis of biodegraded products of 4-nonylphenol indicated the absence of any aromatic compounds other than those of the isomers of 4-nonylphenol. Moreover, Pseudomonas sp. strain P2 was incapable of utilizing various alkanes individually as sole carbon source, whereas the degradation of 4-nonylphenol was observed only when the test organism was induced with phenol, suggesting that the degradation of 4-nonylphenol was possibly initiated from the phenolic moiety of the molecule, but not from the alkyl side-chain.

Keywords

References

  1. Ahel, M., C. Schaffner, and W. Giger. 1996. Behavior of alkylphenol polyethoxylates surfactants in the aquatic environment-III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res. 30: 37-46 https://doi.org/10.1016/0043-1354(95)00123-3
  2. Ajithkumar, B., V. P. Ajithkumar, and R. Iriye. 2003. Degradation of 4-amylphenol and 4-hexylphenol by a new activated sludge isolate of Pseudomonas veronii and proposal for a new subspecies status. Res. Microbiol. 154: 17-23 https://doi.org/10.1016/S0923-2508(02)00009-8
  3. Altschul, S. F., W. Gish, W. Mille, E. W. Myer, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 219: 403-410 https://doi.org/10.1016/0022-2836(91)90182-6
  4. Bennett, E. R. and C. D. Metcalfe. 1998. Distribution of alkylphenol compounds in great lakes sediments, United States and Canada. Environ. Toxicol. Chem. 17: 1230-1235 https://doi.org/10.1897/1551-5028(1998)017<1230:DOACIG>2.3.CO;2
  5. Bulayeva, N. N., B. Gametchu, and C. S. Watson. 2004. Quantitative measurement of estrogen-induced ERK 1 and 2 activation via multiple membrane-initiated signaling pathways. Steroids 69: 181-192 https://doi.org/10.1016/j.steroids.2003.12.003
  6. Bulayeva, N. N. and C. S. Watson. 2004. Xenoestrogen-induced ERK-1 and ERK-2 activation via multiple membrane-initiated signaling pathways. Environ. Health Perspect. 112: 1481-1487 https://doi.org/10.1289/ehp.7175
  7. Corti, A., S. Frassinetti, G. Vallini, S. D'Antone, C. Fichi, and R. Solaro. 1995. Biotransformation of nonionic surfactants. I. Biotransformation of 4-(1-nonyl)phenol by Candida maltosa isolate. Environ. Pollut. 90: 83-87 https://doi.org/10.1016/0269-7491(94)00080-W
  8. Corvini, P. F. X., J. Hollender, R. Ji, S. Schumacher, J. Prell, G. Hommes, U. Priefer, R. Vinken, and A. Schaffer. 2006. The degradation of alpha-quaternary nonylphenol isomers by Sphingomonas sp. strain TTNP3 involves a type II ipso-substitution mechanism. Appl. Microbiol. Biotechnol. 70: 114-122 https://doi.org/10.1007/s00253-005-0080-0
  9. Corvini, P. F. X., R. J. W. Meesters, A. Schaffer, H. F. Schroder, R. Vinken, and J. Hollender. 2004. Degradation of a nonylphenol single isomer by Sphingomonas sp. strain TTNP3 leads to a hydroxylation-induced migration product. Appl. Environ. Microbiol. 70: 6897-6900 https://doi.org/10.1128/AEM.70.11.6897-6900.2004
  10. Corvini, P. F., R. Vinken, G. Hommes, B. Schmidt, and M. Dohmann. 2004. Degradation of the radioactive and non-labelled branched 4(3',5'-dimethyl 3'-heptyl)-phenol nonylphenol isomer by Sphingomonas TTNP3. Biodegradation 15: 9-18 https://doi.org/10.1023/B:BIOD.0000009937.20251.d2
  11. Darby, J. M., D. G. Taylor, and D. J. Hopper. 1987. Hydroquinone as the ring-fission substrate in the catabolism of 4-ethylphenol and 4-hydroxyacetophenone by Pseudomonas putida JD1. J. Gen. Microbiol. 133: 2137-2146
  12. de Vries, Y. P., Y. Takahara, Y. Ikunaga, et al. 2001. Organic nutrient-dependent degradation of branched nonylphenol by Sphingomonas sp. YT isolated from a river sediment sample. Microb. Environ. 16: 240-249 https://doi.org/10.1264/jsme2.2001.240
  13. Ejlertsson, J., M. Nilsson, H. Kylin, A. Bergman, L. Karlson, M. Oquist, and B. Svensson. 1999. Anaerobic degradation of nonylphenol mono- and diethoxylates in digestor sludge, landfilled municipal solid waste, and landfilled sludge. Environ. Sci. Technol. 33: 301-306 https://doi.org/10.1021/es980669u
  14. Felsenstein, J. 1993. PHYLIP (phylogenetic inference package), version 3.5c. Department of Genome Sciences, University of Washington, Seattle, U.S.A
  15. Fujii, K., N. Urano, H. Ushio, M. Satomi, H. Iida, N. Ushio-Sata, and S. Kimura. 2000. Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J. Biochem. 128: 909-916 https://doi.org/10.1093/oxfordjournals.jbchem.a022841
  16. Gabriel, F. L. P., W. Giger, K. Guenther, and H.-P. E. Kohler. 2005. Differential degradation of nonylphenol isomers by Sphingomonas xenophaga Bayram. Appl. Environ. Microbiol. 71: 1123-1129 https://doi.org/10.1128/AEM.71.3.1123-1129.2005
  17. Gabriel, F. L. P., A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, and H.-P. E. Kohler. 2005. A novel metabolic pathway for degradation of 4-nonylphenol environmental contaminants by Sphingomonas xenophaga Bayram. J. Biol. Chem. 280: 15526-15533 https://doi.org/10.1074/jbc.M413446200
  18. Hemmer, M. J., B. L. Hemmer, C. J. Bowman, K. J. Kroll, L. C. Folmar, D. Marcovich, M. D. Hoglund, and N. D. Denslow. 2001. Effects of p-nonylphenol, methoxychlor, and endosulfan on vitellogenin induction and expression in sheepshead minnow (Cyprinodon variegatus). Environ. Toxicol. Chem. 20: 336-343 https://doi.org/10.1897/1551-5028(2001)020<0336:EOPNMA>2.0.CO;2
  19. Inoue, K., S. Kondo, Y. Yoshie, K. Kato, Y. Yoshimura, M. Horie, and H. Nakazawa. 2001. Migration of 4-nonylphenol from polyvinyl chloride food packaging films into food simulants and foods. Food Addit. Contam. 18: 157-164 https://doi.org/10.1080/02652030010018930
  20. Jeong, J. J., J. H. Kim, C.-K. Kim, I. Hwang, and K. Lee. 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: Genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology 149: 3265-3277 https://doi.org/10.1099/mic.0.26628-0
  21. Johnson, J. L. 1994. Similarity analysis of rRNAs, Chapter 27, pp. 683-700. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC
  22. Kamerbeeck, N. M., M. J. H. Moonen, J. G. M. van der Ven, W. J. H. van Berkel, M. W. Fraaije, and D. B. Janssen. 2001. 4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. A novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds. Eur. J. Biochem. 268: 2547-2557 https://doi.org/10.1046/j.1432-1327.2001.02137.x
  23. King, E. O., M. K. Ward, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301-307
  24. Kwack, S. J., O. Kwon, H. S. Kim, S. S. Kim, S. H. Kim, K. H. Sohn, R. D. Lee, C. H. Park, E. B. Jeung, B. S. An, and K. L. Park. 2002. Comparative evaluation of alkylphenolic compounds on estrogenic activity in vitro and in vivo. J. Toxicol. Environ. Health Part A 65: 419-431 https://doi.org/10.1080/15287390252808082
  25. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-267
  26. Moeder, M., C. Martin, D. Schlosser, J. Harynuk, and T. Gorecki. 2006. Separation of technical 4-nonylphenols and their biodegradation products by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A 1107: 233-239 https://doi.org/10.1016/j.chroma.2005.12.092
  27. Michelangeli, F., S. Orlowski, P. Champeil, J. M. East, and A. G. Lee. 1990. Mechanism of inhibition of the $(Ca^{2+}-Mg^{2+})$-ATPase by nonylphenol. Biochemistry 29: 3091-3101 https://doi.org/10.1021/bi00464a028
  28. Ngai, K. L., E. L. Neidle, and L. N. Ornston. 1990. Catechol and chlorocatechol 1,2-dioxygenases. Methods Enzymol. 188: 122-126 https://doi.org/10.1016/0076-6879(90)88022-3
  29. Nozaki, M. 1970. Metapyrocatechase (Pseudomonas). Methods Enzymol. 17A: 522-525
  30. Okai, Y., E. F. Sato, K. Higashi-Okai, and M. Inoue. 2004. Enhancing effect of the endocrine disruptor para-nonylphenol on the generation of reactive oxygen species in human blood neutrophils. Environ. Health Perspect. 112: 553-556 https://doi.org/10.1289/ehp.6584
  31. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
  32. Servos, M. R. 1999. Review of aquatic toxicity, estrogenic responses and bioaccumulation of alkylphenols and alkylphenol polyethoxylates. Water Qual. Res. J. Canada 34: 123-177
  33. Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, Chapter 25, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC
  34. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299: 152-178 https://doi.org/10.1016/S0076-6879(99)99017-1
  35. Soares, A., B. Guieysse, O. Delgado, and B. Mattiasson. 2003. Aerobic biodegradation of nonylphenol by cold-adapted bacteria. Biotechnol. Lett. 25: 731-738 https://doi.org/10.1023/A:1023466916678
  36. Soares, A., M. Murto, B. Guieysse, and B. Mattiasson. 2006. Biodegradation of nonylphenol in a continuous bioreactor at low temperatures and effects on the microbial population. Appl. Microbiol. Biotechnol. 69: 597-606 https://doi.org/10.1007/s00253-005-0067-x
  37. Soto, A. M., H. Justicia, J. W. Wray, and C. Sonnenschein 1991. p-Nonylphenol: An estrogenic xenobiotic released from 'modified' polystyrene. Environ. Health Perspect. 92: 167-173 https://doi.org/10.2307/3431154
  38. Tanghe, T., W. Dhooge, and W. Verstraete. 1999. Isolation of a bacterial strain able to degrade branched nonylphenol. Appl. Environ. Microbiol. 65: 746-751
  39. Tanghe, T., W. Dhooge, and W. Verstraete 2000. Formation of metabolic intermediate 2,4,4-trimethyl-2-pentanol during incubation of a Sphingomonas sp. strain with the xeno-estrogenic octylphenol. Biodegradation 11: 11-19 https://doi.org/10.1023/A:1026518727690
  40. Thiele, B., K. Gunther, and M. J. Schwuger. 1997. Alkylphenol ethoxylates: Trace analysis and environmental behavior. Chem. Rev. 97: 3247-3272 https://doi.org/10.1021/cr970323m
  41. Thiele, B., V. Heinke, E. Kleist, and K. Gunther. 2004. Contribution to the structual elucidationof 10 isomers of technical p-nonylphenol. Environ. Sci. Technol. 38: 3405-3411 https://doi.org/10.1021/es040026g
  42. Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  43. U.S. EPA. 2003. Ambient Aquatic Life Water Quality Criteria for Nonylphenol - Draft. Washington, DC
  44. Ushiba, Y., Y. Takahara, and H. Ohta. 2003. Sphingobium amiense sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment. Int. J. Syst. Evol. Microbiol. 53: 2045-2048 https://doi.org/10.1099/ijs.0.02581-0
  45. Vallini, G., S. Frassinetti, and G. Scorzetti. 1997. Candida aquaetextoris sp. nov., a new species of yeast occurring in sludge from a textile industry wastewater treatment plant in Tuscany, Italy. Int. J. Syst. Bacteriol. 47: 336-340 https://doi.org/10.1099/00207713-47-2-336
  46. Van de Peer, Y. and R. De Wachter. 1994. TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput. Appl. Biosci. 10: 569-570
  47. Van Ginkel, C. G. 1996. Complete degradation of xenobiotic surfactants by consortia of aerobic microorganisms. Biodegradation 7: 151-164 https://doi.org/10.1007/BF00114627
  48. Wheeler, T. F., J. R. Heim, M. R. LaTorre, and A. B. Janes 1997. Mass spectral characterization of p-nonylphenol isomers using high-resolution capillary GC-MS. J. Chromatogr. Sci. 35: 19-30 https://doi.org/10.1093/chromsci/35.1.19
  49. White, R., S. Jobling, S. A. Hoare, J. P. Sumpter, and M. G. Parker. 1994. Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135: 175-182 https://doi.org/10.1210/en.135.1.175
  50. Yao, G. and Y. Hou. 2004. Nonylphenol induces thymocyte apoptosis through Fas/FasL pathway by mimicking estrogen in vivo. Environ. Toxicol. Pharmacol. 17: 19-27 https://doi.org/10.1016/j.etap.2004.01.006
  51. Ying, G. G., B. Williams, and R. Kookana. 2002. Environmental fate of alkylphenols and alkylphenol ethoxylates. A review. Environ. Int. 28: 215-226 https://doi.org/10.1016/S0160-4120(02)00017-X