Inactivation of Airborne E. coli and B. subtilis Bioaerosols Utilizing Thermal Energy

  • Lee, Yun-Ha (Civil and Environmental Engineering, Carnegie Mellon University) ;
  • Lee, Byung-Uk (Department of Mechanical Engineering, Konkuk University)
  • Published : 2006.11.30

Abstract

Airborne microorganisms, which are currently termed bioaerosols, have received attention owing to the harmful effects they have on human health. As the concern over airborne microorganisms grows, there also grows an urgent need to study and develop efficient methods for controlling them. In this study, thermal energy using a thermal tube was tested as a control method, mainly against airborne E. coli. For a comparison, B. subtilis var. niger spores were utilized in the experimentation. It was found that the widely known inactivation conditions for microorganisms were not adequate against airborne microorganisms. The experimental results demonstrated the need for extensive studies that should investigate adequate and economic conditions to control against airborne bacteria. In this study, thermal energy exposed by the thermal tube demonstrated an inactivation performance for controlling E. coli bioaerosols.

Keywords

References

  1. Decker, H. M., F. J. Citek, B. Harstad, N. H. Gross, and F. J. Piper. 1954. Time temperature studies of spore penetration through an electric air sterilizer. Appl. Microbiol. 2: 33-36
  2. Ehrlich, R. S., S. Miller, and R. L. Walker. 1970. Relationship between atmospheric temperature and survival of airborne bacteria. Appl. Microbiol. 19: 245-249
  3. Ehrlich, R. S., S. Miller, and R. L. Walker. 1970. Effects of atmospheric humidity and temperature on the survival of airborne Flavobacterium. Appl. Microbiol. 20: 884-887
  4. Friedlander, S. K. 2000. Smoke Dust and Haze, 2nd Ed. Oxford University Press
  5. Gremillion, G. G., L. F. Miller, and G. A. Bodmer. 1958. An electric incinerator for sterilization of small volumes of air. Appl. Microbiol. 6: 274-276
  6. Grinshpun, S. A., A. Adhikari, B. U. Lee, M. Trunov, G. Mainelis, M. Yermakov, and T. Reponen. 2004. Indoor air pollution control through ionization, pp. 689-704. In C. A. Brebbia (ed.), Air Pollution XII. Wessex Institute of Technology Press, Southampton, U.K
  7. Hoffman, R. K., V. M. Gambill, and L. M. Buchanan. 1968. Effect of cell moisture on the thermal inactivation rate of bacterial spores. Appl. Microbiol. 16: 1240-1244
  8. Jaenicke, R. 2005. Abundance of cellular material and proteins in the atmosphere. Science 308: 73 https://doi.org/10.1126/science.1106335
  9. Kim, H.-W., K.-M. Kim, E.-J. Ko, S.-K. Lee, S.-D. Ha, K.-B. Song, S.-K. Park, K.-S. Kwon, and D.-H. Bae. 2004. Development of antimicrobial edible film from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 14: 1303-1309
  10. Lee, B. U., S. H. Kim, and S. S. Kim. 2002. Hygroscopic growth of E. coli and B. subtilis bioaerosols. J. Aerosol Sci. 33: 1721-1723 https://doi.org/10.1016/S0021-8502(02)00114-3
  11. Lee, B. U. and S. S. Kim. 2003. Sampling E. coli and B. subtilis bacteria bioaerosols by new type of impactor with cooled impaction plate. J. Aerosol Sci. 34: 1097-1100 https://doi.org/10.1016/S0021-8502(03)00076-4
  12. Lee, B. U. and Y. H. Lee. 2005. Usage of the heating tube to control E. coli bacteria bioaerosols. Particle Aerosol Res. 1: 39-45
  13. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2005. Filtering efficiency of N95- and R95-type facepiece respirators, dust-mist facepiece respirators, and surgical masks operating in unipolarly ionized indoor air environments. Aerosol Air Qual. Res. 5: 25-38 https://doi.org/10.4209/aaqr.2005.06.0003
  14. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2004. Unipolar ion emission enhances respiratory protection against fine and ultrafine particles. J. Aerosol Sci. 35: 1359-1368 https://doi.org/10.1016/j.jaerosci.2004.05.006
  15. Lee, B. U., M. Yermakov, and S. A. Grinshpun. 2004. Removal of fine and ultrafine particles from indoor air environments by the unipolar ion emission. Atmos. Environ. 38: 4815-4823 https://doi.org/10.1016/j.atmosenv.2004.06.010
  16. Lim, Y. S., S. M. Bae, and K. Kim. 2005. Mass production of yeast spores from compressed yeast. J. Microbiol. Biotechnol. 15: 568-572
  17. Madigan, M. T., J. M. Martinko, and J. Parker. 2000. Brock Biology of Microorganisms, Chapters 5, 18. 9th Ed. Prentice-Hall, Inc
  18. Mullican, C. L., L. M. Buchanan, and R. K. Hoffman. 1971. Thermal inactivation of aerosolized Bacillus subtilis var. niger spores. Appl. Microbiol. 22: 557-559
  19. Nicas, M. and S. L. Miller. 1999. A multi-zone model evaluation of the efficacy of upper-room air ultraviolet germicidal irradiation. Appl. Occup. Environ. Hyg. 14: 317-328 https://doi.org/10.1080/104732299302909
  20. Park, S.-L., M.-J. Kwon, S.-K. Kim, and S.-W. Nam. 2004. GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. J. Microbiol. Biotechnol. 14: 216-219
  21. Park, S. Y., J.-W. Choi, J. Yeon, M. J. Lee, D. H. Chung, M.-G. Kim, K.-H. Lee, K.-S. Kim, D.-H. Lee, G.-J. Bahk, D.-H. Bae, K.-Y. Kim, C.-H. Kim, and S.-D. Ha. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol. 15: 1323-1329
  22. Riley, R. L., M. Knight, and G. Middlebrook. 1976. Ultraviolet susceptibility of BCG and virulent tubercle bacilli. Am. Rev. Respir. Dis. 113: 413-418
  23. Schaeffer, P., J. Millet, and J. P. Aubert. 1965. Catabolic repression of bacterial sporulation. Proc. Natl. Acad. Sci. USA 54: 704-711
  24. Theunissen, H. J. H., N. A. L. Toom, A. Burggraaf, E. Stoiz, and M. F. Michel. 1993. Influence of temperature and relative humidity on the survival of Chlamydia pneumoniae in aerosols. Appl. Environ. Microbiol. 59: 2589-2593
  25. Varma, J. K., K. D. Greene, M. E. Reller, S. M. DeLong, J. Trottier, S. F. Nowicki, M. DiOrio, E. M. Koch, T. L. Bannerman, S. T. York, M. A. Lambert-Fair, J. G. Wells, and P. S. Mead. 2003. An outbreak of Escherichia coli O157 infection following exposure to a contaminated building. J. Am. Med. Assoc. 290: 2709-2712 https://doi.org/10.1001/jama.290.20.2709
  26. Zucker, B. A., S. Trojan, and W. Muller. 2000. Airborne Gram-negative bacterial flora in animal houses. J. Vet. Med. B. Infect. Dis. Vet. Public Health B 47: 37-46 https://doi.org/10.1046/j.1439-0450.2000.00308.x